Twenty-four multiparous dairy cows (eight with ruminal cannulae) were blocked by days in milk and assigned to six balanced 4 x 4 Latin squares with 21-d periods. The four diets, formulated from alfalfa silage plus a concentrate mix based on ground high moisture ear corn, contained (dry matter basis): 1) 20% concentrate, 80% alfalfa silage (24% nonfiber carbohydrate; NFC), 2) 35% concentrate, 65% alfalfa silage (30% NFC), 3) 50% concentrate, 50% alfalfa silage (37% NFC), or 4) 65% concentrate, 35% alfalfa silage (43% NFC). Soybean meal and urea were added to make diets isonitrogenous with equal nonprotein nitrogen (NPN) (43% of total N). Total urine was collected with indwelling Folley catheters for 24 h during each period. There was no effect of diet on urinary creatinine excretion (average 29 mg/kg of BW/d). There were quadratic effects of diet on total urinary ecretion of allantoin, uric acid, and purine derivatives (allantoin plus uric acid), and on ruminal synthesis of microbial N estimated from purine derivatives; maxima occurred at about 35% dietary NFC. Urinary excretion also was estimated with spot urine samples from creatinine concentration and the mean daily creatinine excretion. Daily excretion of allantoin, uric acid, and purine derivatives estimated from spot urine sampling followed the same pattern as that observed with total collection; differences between measured and estimated urine volume were significant only for 35% dietary concentrate. Spot urine sampling appeared to yield satisfactory estimates of purine derivative excretion. Maximal urea N excretion was estimated to occur at about 31% dietary NFC. Milk allantoin secretion increased linearly with concentrate and accounted for 4 to 6% of the total purine derivative excretion. Microbial yield was maximal at 35% dietary NFC, suggesting that this was the optimal level for utilization of dietary NPN from alfalfa silage and other sources.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.s0022-0302(99)75525-6DOI Listing

Publication Analysis

Top Keywords

alfalfa silage
28
purine derivatives
16
allantoin uric
12
uric acid
12
35% dietary
12
dietary nfc
12
spot urine
12
high moisture
8
excretion
8
total purine
8

Similar Publications

Alfalfa silage due to its high protein can lead to easier feeding management, but its high proportion of rumen-degradable protein can reduce rumen nitrogen utilization. Nevertheless, increasing dietary energy can enhance ruminal microbial protein synthesis. Thirty-two Suffolk female sheep were used in this study, with a 2 × 2 factorial arrangement of treatment.

View Article and Find Full Text PDF

This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.

View Article and Find Full Text PDF

Phycocyanin Additives Regulate Bacterial Community Structure and Antioxidant Activity of Alfalfa Silage.

Microorganisms

December 2024

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China.

Phycocyanin is a water-soluble pigment protein extracted from prokaryotes such as cyanobacteria and has strong antioxidant activity. As a silage additive, it is expected to enhance the antioxidant activity and fermentation quality of alfalfa silage. This study revealed the effects of different proportions of phycocyanin (1%, 3%, 5%) on the quality, bacterial community and antioxidant capacity of alfalfa silage.

View Article and Find Full Text PDF

Nano-encapsulated Yucca extract as feed additives: Ruminal greenhouse gas emissions of three forages.

AMB Express

December 2024

Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.

Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.

View Article and Find Full Text PDF

Sizes and rates of potentially digestible (B) and undegradable (C) pools of amylase-treated neutral detergent fiber (aNDF) are used to predict ruminal aNDF digestibility (aNDFD%) in widely used dairy cattle diet formulation programs. An exponential 3-pool model (3P) has been suggested for estimating digestion kinetic parameters for this purpose, however, the approach has not been compared with using a simpler exponential 2-pool model (2P), nor with using commercial laboratory (lab) data on which application would rely, nor on model impact on predictions of aNDFD% which is the aim of their application. Our objective was to determine whether 2P or 3P most accurately and efficiently characterizes aNDF digestion kinetics and if the models differed in predicted aNDFD%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!