Control by GABA and tachykinins of the evoked release of acetylcholine in striatal compartments under different modalities of NMDA receptor stimulation.

Brain Res

Chaire de Neuropharmacologie, INSERM U114, Collège de France, 11 place Marcelin Berthelot, Paris, France.

Published: January 2000

The contribution of endogenously released dopamine, GABA and its co-transmitters, substance P (SP) and neurokinin A (NKA), to the control of the evoked release of acetylcholine was investigated in vitro in the striosomes and the matrix of the rat striatum under various modalities of NMDA receptor stimulation (NMDA 50 microM or 1 mM without or with 10 microM D-serine). Sulpiride, bicuculline, SR140333 and SR48968, the antagonists of D(2), GABA A, NK(1) and NK(2) tachykinin receptors, respectively, were used for this purpose. (1) In both striatal compartments, the dopamine-mediated inhibitory regulation of the evoked release of acetylcholine only occurred when D-serine was co-applied with 50 microM or 1 mM NMDA. (2) In striosomes, the dopamine-dependent inhibitory effects of SP and NKA on the evoked release of acetylcholine only occurred when D-serine was co-applied with 50 microM or 1 mM NMDA. (3) A similar inhibitory regulation by NKA, but not SP, was found in the matrix when 1 mM NMDA was co-applied with D-serine. (4) In contrast, the dopamine-dependent facilitatory effect of GABA on the evoked release of acetylcholine did not require added D-serine and was more important with 1 mM than 50 microM NMDA. In the presence of D-serine, and depending on the NMDA concentration, the facilitatory regulation of GABA was reduced (matrix) or suppressed (striosomes). This latter effect was partially restored in the presence of SR48968. Therefore, the dopamine-dependent inhibitory effects of tachykinins on the evoked release of acetylcholine only occurred when NMDA receptors were stimulated in the presence of saturating concentrations of D-serine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(99)02305-7DOI Listing

Publication Analysis

Top Keywords

evoked release
24
release acetylcholine
24
acetylcholine occurred
12
microm nmda
12
nmda
9
tachykinins evoked
8
striatal compartments
8
modalities nmda
8
nmda receptor
8
receptor stimulation
8

Similar Publications

Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.

View Article and Find Full Text PDF

Reactive oxygen species with evoked immunotherapy holds tremendous promise for cancer treatment but has limitations due to its dependence on exogenous excitation and/or endogenous HO and O. Here we report a versatile oxidizing pentavalent bismuth(V) nanoplatform (NaBiO-PEG) can generate reactive oxygen species in an excitation-free and HO- and O-independent manner. Upon exposure to the tumor microenvironment, NaBiO-PEG undergoes continuous H-accelerated hydrolysis with •OH and O generation through electron transfer-mediated Bi-to-Bi conversion and lattice oxygen transformation.

View Article and Find Full Text PDF

In situ vaccine (ISV) can activate the anti-tumor immune system by inducing immunogenic cell death (ICD) at the tumor site. However, the development of tumor ISV still faces challenges due to insufficient tumor antigens released by tumor cells and the existence of tumor immunosuppressive microenvironment (TIME). Targeting the STING pathway has been reported to enhance the adjuvant effects of in situ tumor vaccines by initiating innate immunity.

View Article and Find Full Text PDF

How does oxytocin modulate human behavior?

Mol Psychiatry

January 2025

The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

While the highly evolutionarily conserved hypothalamic neuropeptide, oxytocin (OT) can influence cognitive, emotional and social functions, and may have therapeutic potential in disorders with social dysfunction, it is still unclear how it acts. Here, we review the most established findings in both animal model and human studies regarding stimuli which evoke OT release, its primary functional effects and the mechanisms whereby exogenous administration influences brain and behavior. We also review progress on whether OT administration can improve social symptoms in autism spectrum disorder and schizophrenia and consider possible impediments to translational success.

View Article and Find Full Text PDF

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!