The K-sam gene was first identified as an amplified gene from human gastric cancer cell line KATOIII, and its product is identical to fibroblast growth factor receptor 2. The K-sam gene is located on human chromosome 10q26 and is preferentially amplified in the poorly differentiated types, especially in the scirrhous type, of gastric cancers. During the course of studies on the structural characterization of the amplification units, we found that the carboxyl-terminal exons of K-sam were deleted in three of four of the scirrhous type of gastric cancer cell lines. These deletions generate preferential expression of mRNAs encoding K-sam proteins lacking the carboxyl-terminal region containing the tyrosine residues at positions 780, 784, and 813. The carboxyl-terminal region has been reported to have a sequence required for the inhibition of NIH3T3 transformation, indicating that cells with amplification of the truncated K-sam gene have a growth advantage during the carcinogenic process for the scirrhous type of gastric cancers. This is the first report showing the deletion of the carboxyl-terminal exons of the receptor-type of the protein tyrosine kinase gene. Sequence analysis of the DNA sequences surrounding the deletion junctions shows the presence of unique sequences and indicates the involvement of short homology-mediated recombination in the generation of these deletions.
Download full-text PDF |
Source |
---|
BMC Plant Biol
April 2024
Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Warsaw, Poland.
Background: Leaf rust (LR) is among the most destructive fungal diseases of rye (Secale cereale L.). Despite intensive research using various analytical and methodological approaches, such as quantitative trait locus (QTL) mapping, candidate gene expression analysis, and transcriptome sequencing, the genetic basis of the rye immune response to LR remains unclear.
View Article and Find Full Text PDFInt J Biol Macromol
June 2023
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China. Electronic address:
Water flux across cells predominantly occurs through the pore formed by the aquaporin channels. Since water balance is one of the most important challenges to terrestrial animals, aquaporin evolution and diversity is known to play roles in animal terrestrialisation. Arachnids (Arthropoda: Chelicerata: Arachnida) are the second most diverse group and represent the pioneer land colonists in animals; however, there remains no thorough investigation on aquaporin evolution and diversity in this evolutionarily important lineage.
View Article and Find Full Text PDFJ Plant Res
January 2022
Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan.
The ASYMMETRIC LEAVES2 (AS2) gene in Arabidopsis thaliana is responsible for the development of flat, symmetric, and extended leaf laminae and their vein systems. AS2 protein is a member of the plant-specific AS2/LOB protein family, which includes 42 members comprising the conserved amino-terminal domain referred to as the AS2/LOB domain, and the variable carboxyl-terminal region. Among the members, AS2 has been most intensively investigated on both genetic and molecular levels.
View Article and Find Full Text PDFFASEB J
March 2020
Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
The mu-opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating an array of splice variants that are conserved from rodent to human. Both mouse and human OPRM1 have five exon 5-associated seven transmembrane full-length carboxyl terminal variants, MOR-1B1, MOR-1B2, MOR-1B3, MOR-1B4, and MOR-1B5, all of which are derived from alternative 3' splicing from exon 3 to alternative sites within exon 5. The functional relevance of these exon 5-associated MOR-1Bs has been demonstrated in mu agonist-induced G protein coupling, adenylyl cyclase activity, receptor internalization and desensitization, and post-endocytic sorting, as well as region-specific expression at the mRNA level.
View Article and Find Full Text PDFMol Brain
January 2020
Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
Abnormal accumulation of TAR DNA-binding protein 43 (TDP-43), a DNA/RNA binding protein, is a pathological signature of amyotrophic lateral sclerosis (ALS). Missense mutations in the TARDBP gene are also found in inherited and sporadic ALS, indicating that dysfunction in TDP-43 is causative for ALS. To model TDP-43-linked ALS in rodents, we generated TDP-43 knock-in mice with inherited ALS patient-derived TDP-43 mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!