In class II major histocompatibility complex (MHC) proteins, residue beta57 is usually aspartic acid. Alleles carrying serine, valine, or alanine at this position are strongly correlated with the development of insulin-dependent diabetes mellitus (IDDM). Asp(beta)57 participates in a conserved salt bridge that bridges the alpha and beta subunits in the peptide-binding site. It has been proposed that the correlation between IDDM and MHC alleles lacking Asp(beta)57 may be due to an instability of the protein caused by loss of this salt bridge. Using a pair of HLA-DQ proteins (alpha1*0201, beta1*0302) and (alpha1*0201, beta1*0303) differing only in having aspartic acid or alanine at position beta57, we show that the polymorphism does not have a significant effect on protein stability for either the empty or peptide-loaded forms. However, the circular dichroism spectra indicate that empty and peptide-loaded Alabeta57 proteins display slightly different secondary structures relative to their Aspbeta57 counterparts. A set of three peptides shows different binding affinities for DQ(alpha1*0201, beta1*0302) relative to DQ(alpha1*0201, beta1*0303). We propose that substitution of Asp(beta)57 residue causes a local rearrangement within the DQ peptide-binding site that alters the peptide-binding specificity. This rearrangement may help to explain the previously observed differences in SDS stability between Asp and non-Asp(beta)57 DQ proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0198-8859(99)00120-2 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.
Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, National Hospital of Sri Lanka, Colombo, LKA.
Hereditary hemochromatosis occurs due to genetic mutations, namely, cysteine-to-tyrosine substitution at amino acid 282 (C282Y) and histidine-to-aspartic acid substitution at 63 (H63D) mutations. The role of H63D mutation in hemochromatosis is less clear, and its penetrance is low even in homozygotes. Therefore, iron overload in H63D heterozygotes is extremely rare and scarcely reported.
View Article and Find Full Text PDFBiofilm
June 2025
CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!