The preparation of a series of novel Pt(IV) complexes containing the anionic polyfluoroaryl ligands, 2,3,5,6-tetrafluorophenyl (p-HC6F4), 2,3,5,6-tetrafluoro-4-methoxyphenyl (p-MeOC6F4) and pentafluorophenyl (C6F5) are described. The crystal structure of a representative complex, [Pt(p-MeOC6F4)2(O2CEt)2(en)] (en = ethane-1,2-diamine) was determined and confirms the trans arrangement of the carboxylato ligands. Reduction potentials of the series of complexes reveal that replacement of equatorial chloro ligands by polyfluoroaryl ligands makes reduction substantially more difficult. They also confirm previously reported trends in that complexes having axial carboxylato ligands are more readily reduced than those having axial hydroxo ligands. Reduction potentials and in vitro activities showed no obvious correlations. Moderate to high activity was observed for many complexes in the series, including some of those that were very difficult to reduce.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0162-0134(99)00133-6 | DOI Listing |
Nanoscale
January 2025
Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.
Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.
View Article and Find Full Text PDFOdontology
January 2025
School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China.
Two novel 3D inorganic-organic hybrids based on [VO]/[VO] clusters, [Cu(bbpy)(VO)]·3HO () and [CuAg(pty)(VO)]·HO () (bbpy = 3,5-bis(1-benzimidazole) pyridine, pty = 4'-(4″-pyridyl)-2,2':6',2″-terpyridine), were isolated in the same POV/Cu/N-heterocycle ligand reaction systems. Hybrids and possess novel three-dimensional bimetallic frameworks derived from [VO]/[VO] clusters and Cu-organic complexes. In , bbpy ligands are grafted by Cu to a grid ribbon 2D sheet, which are connected with benzene-like [VO] to yield a 3D framework.
View Article and Find Full Text PDFInorg Chem
January 2025
Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria.
Platinum(II) complexes prevail as first-line treatment for many cancers but are associated with serious side effects and resistance development. Picoplatin emerged as a promising alternative to circumvent GSH-induced tumor resistance by introducing a bulky 2-picoline ligand. Although clinical studies were encouraging, picoplatin did not receive approval.
View Article and Find Full Text PDFJ Pestic Sci
November 2024
Syngenta, Bioscience, Jealott's Hill Research Centre.
Flometoquin (FLO) is a novel quinoline-type insecticide that elicits a quick knock-down effect against target pests; however, its mode of action (MoA) remains unknown. In this study, we investigated its MoA systematically, using varying biochemical techniques. Since FLO-treated insects exhibited symptoms similar to those induced by respiratory inhibitors, we examined the effect of FLO on respiratory enzyme complexes using mitochondria isolated from different insects (housefly, diamondback moth, and western flower thrips).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!