Effects of 3,N4-ethenodeoxycytidine on duplex stability and energetics.

IARC Sci Publ

Department of Chemistry, Rutgers, State University of New Jersey, Piscataway 08854-8087, USA.

Published: February 2000

The exocyclic cytosine adduct 3,N4-ethenocytosine is highly mutagenic in mammalian cells. We describe the impact of this adduct on DNA duplex stability. The adduct does not disrupt the overall B-form DNA structure; however, structural accommodation of the adduct is necessary at the lesion site. Despite the relatively small structural perturbation imparted by the adduct, there is a large adduct-induced destabilization of the DNA duplex. This destabilization is observed to be independent of the cross-strand partner base and neighbouring base pairs. The thermodynamic origins of the destabilization are, however, strongly dependent on the cross-strand partner base and neighbouring base pairs. Comparisons are made between the impact of the 3,N4-ethenocytosine adduct and other lesions on DNA thermodynamics. The lesions are similar in that all result in destabilization of the DNA duplex. The magnitudes and the thermodynamic origins of that destabilization vary widely, the 3,N4-ethenocytosine adduct being dramatically more destabilizing than other lesions. The impact of damaged sites on the stability of the DNA helix suggests that energetic differences between damaged and normal DNA may contribute to the recognition of damage by the cellular DNA repair machinery.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dna duplex
12
duplex stability
8
dna
8
destabilization dna
8
cross-strand partner
8
partner base
8
base neighbouring
8
neighbouring base
8
base pairs
8
thermodynamic origins
8

Similar Publications

Psoralen-conjugated triplex-forming oligonucleotides (Ps-TFOs) have been employed for the photodynamic regulation of gene expression by the photo-cross-linking of psoralen with the target DNA. However, stable triplex formation requires a consecutive purine base sequence in one strand of the target DNA duplexes. The pyrimidine-base interruption in the consecutive purine base sequence drastically decreases the thermodynamic stability of the corresponding triplex, which hampers the TFO application.

View Article and Find Full Text PDF

We investigate the impact of poly adenine (poly-A) sequences on the type and stability of liquid crystalline (LC) phases formed by concentrated solutions of gapped DNA (two duplex arms bridged by a flexible single strand) using synchrotron small-angle X-ray scattering and polarizing optical microscopy. While samples with mixed sequence form layered (smectic) phases, poly-A samples demonstrate a columnar phase at lower temperatures (5-35 °C), not previously observed in GDNA samples, and a smectic-B phase of exceptional stability at higher temperatures (35-65 °C). We present a model that connects the formation of these LC phases with the unique characteristics of poly-A sequences, which manifest in various biological contexts, including DNA condensation and nucleosome formation.

View Article and Find Full Text PDF

The ability to label synthetic oligonucleotides with fluorescent probes has greatly expanded their nanotechnological applications. To continue this expansion, it is essential to develop approachable, modular, and tunable fluorescent platforms. In this study, we present the synthesis and incorporation of an amino-formyl-thieno[3,2-]thiophene (AFTh) handle at the 5'-position of DNA oligonucleotides.

View Article and Find Full Text PDF

Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha.

Microb Cell Fact

January 2025

National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Background: Ogataea polymorpha, a non-conventional methylotrophic yeast, has demonstrated significant potential for heterologous protein expression and the production of high-value chemicals and biopharmaceuticals. However, the lack of precise and efficient genome editing tools severely hinders the construction of cell factories. Although the CARISP-Cas9 system has been established in Ogataea polymorpha, the gene editing efficiency, especially for multiple genes edition, needs to be further improved.

View Article and Find Full Text PDF

Highly sensitive and catalytic electrochemical aptamer-based biosensor for β-lactoglobulin via coupling redox recycling background minimization with DNAzyme amplification.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.

Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!