DNA content by in situ fluorescence imaging and S-phase detection, with chromatin structure preserved.

Anal Quant Cytol Histol

Institut National de la Recherche Agronomique Unité 806/Equipe Associée 2703 Muséum National d'Histoire Naturelle, Paris, France.

Published: December 1999

Objective: To test the feasibility of in situ DNA quantitation of adherent cells' nuclei by fluorescence imaging, preserving chromatin structure and to follow-up S phase, in relation to DNA content, in order to assess the precision of DNA measurements.

Study Design: Double labeling experiments involved total DNA staining with Hoechst 33342 and BrdU immunostaining (after either Br photolysis and DNA strand break labeling by terminal transferase or acid denaturation) to detect replicating DNA. An epifluorescence microscope was used, images captured with a CCD camera and quantitative total DNA measurements done in 12 bits with IPLab software. BrdU results were related to DNA content on an individual cell basis. Cell cycle analyses were run with Imastat software (developed in the laboratory) on Hoechst-stained cells and on double labeled cells.

Results: In cells progressing through the cycle, as assessed by BrdU, a corresponding increase in DNA content was measured. Early S differed from G1 (P < .05). Imastat analyses gave a CV for GI peak of 6-7%.

Conclusion: Quantitative fluorescence imaging allows a sensitive determination of DNA content for adherent-cell nuclei in situ. Topologic analyses of nuclear components will be possible in relation to DNA content.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dna content
24
dna
12
fluorescence imaging
12
chromatin structure
8
relation dna
8
total dna
8
content
5
content situ
4
situ fluorescence
4
imaging s-phase
4

Similar Publications

Background: Pseudogalium is a new monotypic genus with two subspecies in China and one in Japan, which holds a distinctive phylogenetic position and ecological significance within the tribe Rubieae. Chloroplast genomes contain abundant information for resolving phylogenetic relationships. To investigate the phylogenetics of P.

View Article and Find Full Text PDF

Root-knot nematodes (RKN) of the genus Meloidogyne are obligatory plant endoparasites that cause substantial economic losses to agricultural production and impact the global food supply. These plant parasitic nematodes belong to the most widespread and devastating genus worldwide, yet few measures of control are available. The most efficient way to control RKN is deployment of resistance genes in plants.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the role of DNA ploidy and proliferation index in distinguishing ameloblastoma (AB) from ameloblastic carcinoma (AC).

Methods: The study included 29 ACs, 6 conventional ABs that transformed into ACs, and a control cohort of 20 conventional ABs. The demographics and clinicopathologic details of the included cases were summarised and compared.

View Article and Find Full Text PDF

Mitochondrial DNA alterations in precision oncology: Emerging roles in diagnostics and therapeutics.

Clinics (Sao Paulo)

January 2025

Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil. Electronic address:

Mitochondria are dynamic organelles essential for vital cellular functions, including ATP production, apoptosis regulation, and calcium homeostasis. Increasing research has highlighted the significance of mitochondrial DNA (mtDNA) content and alterations in the development and progression of various diseases, including cancer. The high mutation rate and vulnerability of mtDNA to damage make these alterations valuable biomarkers for cancer diagnosis, monitoring disease progression, detecting metastasis, and predicting treatment resistance across different tumor types.

View Article and Find Full Text PDF

High yield and good quality are two predominant objectives of most of the wheat breeding programs. Modulating HMW-GS composition is an effective approach to improve grain quality without yield penalty. In this study, we first analyzed the background similarity of three near-isogenic lines (NILs) with 1Ax-null, 1Ax1 or 1Ax2∗ alleles in the background of cultivar Xiaoyan-22 at the protein and DNA levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!