The noncatalytic domain of protein-tyrosine phosphatase (PTP)-PEST contains a binding site for the focal adhesion-associated protein paxillin. This binding site has been narrowed to a 52-residue sequence that is composed of two nonoverlapping, weak paxillin binding sites. The PTP-PEST binding site on paxillin has been mapped to the two carboxyl-terminal LIM (lin11, isl-1, and mec-3) domains. Transient expression of PTP-PEST reduced tyrosine phosphorylation of p130(cas), as anticipated. A PTP-PEST mutant defective for binding p130(cas) does not cause a reduction in its tyrosine phosphorylation in vivo. Expression of PTP-PEST also caused a reduction of phosphotyrosine on paxillin. Expression of mutants of PTP-PEST with deletions in the paxillin-binding site did not associate with paxillin in vivo and failed to cause a reduction in the phosphotyrosine content of paxillin. These results demonstrate that paxillin can serve as a PTP-PEST substrate in vivo and support the model that a noncatalytic domain interaction recruits paxillin to PTP-PEST to facilitate its dephosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.275.2.1405DOI Listing

Publication Analysis

Top Keywords

noncatalytic domain
12
binding site
12
paxillin
9
domain protein-tyrosine
8
ptp-pest
8
ptp-pest binding
8
paxillin binding
8
expression ptp-pest
8
tyrosine phosphorylation
8
reduction phosphotyrosine
8

Similar Publications

Premelted-Substrate-Promoted Selective Etching Strategy Realizing CVD Growth of High-Quality Graphene on Dielectric Substrates.

ACS Appl Mater Interfaces

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Direct chemical vapor deposition growth of high-quality graphene on dielectric substrates is a great challenge. Graphene growth on dielectrics always suffers from the issues of a high nucleation density and poor quality. Herein, a premelted-substrate-promoted selective etching (PSE) strategy was proposed.

View Article and Find Full Text PDF

ADP-inhibited structure of non-catalytic site-depleted FF-ATPase from thermophilic Bacillus sp. PS-3.

Biochim Biophys Acta Bioenerg

January 2025

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:

The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.

View Article and Find Full Text PDF

Sesaminol is an organic compound which shows the strong antioxidant, anti-inflammatory, and neuroprotective properties. Sesaminol triglucoside (STG) is glycosylated form of sesaminol and abundantly exists in sesame seeds. However, typical β-glucosidases could not deglycosylate STG probably due to its bulky aglycone.

View Article and Find Full Text PDF

β-1,3-Glucans form the major carbohydrate component of fungal cell walls, playing a vital role in cell viability, stress response, virulence, and even healthy functions such as immuno-enhancement. The elongation and branching of β-1,3-glucans is a mystery. More evidence proved the β-1, 3-glucantransferases belonging to GH72 or GH17 family to branch and remodel the synthesized linear β-1, 3-glucan chain by cleaving its internal β-1, 3-linkage and transfer the cleaved fragment to the nonreducing end of another β-1, 3-glucan acceptor.

View Article and Find Full Text PDF

Histone methyltransferase NSD2 (MMSET) overexpression in multiple myeloma (MM) patients plays an important role in the development of this disease subtype. Through the expansion of transcriptional activating H3K36me2 and the suppression of repressive H3K27me3 marks, NSD2 activates an aberrant set of genes that contribute to myeloma growth, adhesive and invasive activities. NSD2 transcriptional activity also depends on its non-catalytic domains, which facilitate its recruitment to chromatin through histone binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!