The thermodynamic parameters affecting protein-protein multimeric self-assembly equilibria of the histone-like protein H-NS were quantified by "large zone" gel-permeation chromatography. The abundance of the different association states (monomer, dimer, and tetramer) were found to be strictly dependent on the monomeric concentration and affected by physical (temperature) and chemical (cations) parameters. On the basis of the results obtained in this study and the available structural information concerning this protein, a mechanism is proposed to explain the association behavior also in relation to the functional properties of the protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.275.2.729 | DOI Listing |
Sci Rep
January 2025
Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
Multimerization is a powerful engineering strategy for enhancing protein structural stability, diversity and functional performance. Typical methods for clustering proteins include tandem linking, fusion to self-assembly domains and cross-linking. Here we present a novel approach that leverages the Peptidisc membrane mimetic to stabilize hydrophobic-driven protein clusters.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:
The formation of functional bacterial amyloids by phenol-soluble modulins (PSMs) in Staphylococcus aureus is a critical component of biofilm-associated infections, providing robust protective barriers against antimicrobial agents and immune defenses. Clarifying the molecular mechanisms of PSM self-assembly within the biofilm matrix is essential for developing strategies to disrupt biofilm integrity and combat biofilm-related infections. In this study, we analyzed the self-assembly dynamics of PSM-β1 and PSM-β2 by examining their folding and dimerization through long-timescale atomistic discrete molecular dynamics simulations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.
This study shows that five membrane proteins-three GPCRs, an ion channel, and an enzyme-form self-clusters under natural expression levels in a cardiac-derived cell line. The cluster size distributions imply that these proteins self-oligomerize reversibly through weak interactions. When the concentration of the proteins is increased through heterologous expression, the cluster size distributions approach a critical distribution at which point a phase transition occurs, yielding larger bulk phase clusters.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation. Electronic address:
One of the promising drug delivery tools is ferritin, which features high stability at a wide range of conditions and protects cargo by its spherical protein shell. We studied the self-assembly into homoglobules of ferritin from H. pylori and a chimeric protein ferritin-SUMO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!