The class II filamentous virus Pf3 packages a circular single-stranded DNA genome of approximately 5833 [corrected] nucleotides within a cylindrical capsid constructed from approximately 2500 [corrected] copies of a 44 residue alpha-helical subunit. The single tryptophan residue (Trp 38) of the capsid subunit is located within a basic C-terminal sequence (.R(+)WIK(+)AQFF). The local environment of Trp 38 in the native Pf3 assembly has been investigated using 229 nm excited ultraviolet-resonance Raman (UVRR) spectroscopy and fluorescence spectroscopy. Trp 38 exhibits an anomalous UVRR signature in Pf3, including structure-diagnostic Raman bands (763, 1228, 1370, and 1773 cm(-)(1)) that are greatly displaced from corresponding Raman markers observed in either detergent-disassembled Pf3, class I filamentous viruses, most globular proteins, or aqueous L-TRP. An unusual and highly quenched fluorescence spectrum is also observed for Trp 38. These distinctive UVRR and fluorescence signatures together reflect interactions of the Trp 38 side chain that are specific to the native PF3 assembly. The experimental results on PF3 and supporting spectroscopic data from other proteins of known three-dimensional structure favor a model in which pi electrons of the Trp 38 indolyl ring interact specifically with a basic side chain of the subunit C-terminal sequence. Residues Arg 37 AND Lys 40 are plausible candidates for the proposed cation-pi interaction of Trp 38. The present study suggests that raman spectroscopy may be a generally useful probe of interactions between the indolyl pi-electron system of tryptophan and electropositive groups in proteins and their assemblies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi992018w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!