How seizures arise and recur in epilepsy is unknown. Recent genetic, pharmacological and electrophysiological data indicate a significant but undisclosed role for voltage-dependent calcium channels. Since the contribution such channels make to nerve function reflects the targeting of discrete subtypes to distinct cellular regions, we hypothesized that epilepsy reflects alterations in their spatiotemporal patterns of expression at the cell surface. To test this possibility, we examined the expression and distribution of hippocampal N-type calcium channels in an animal seizure model: kindling. Confocal microscopy of N-type calcium channels labeled with a new fluorescent ligand, coupled with a novel technique for analysing multiple images, revealed a 20-40% increase in their expression in CA1 and CA3 within 24 h post-seizure. These increases persisted in the dendritic fields of CA1, but had dissipated in CA3 by 28 days post-seizure. Such changes correlate poorly with cell number or synaptogenesis, but are consistent with increased N-type calcium channel expression on presynaptic terminals or, more likely, dendrites. These data rationalize recent electrophysiology and in situ hybridization data, and suggest that kindling alters N-type calcium channel trafficking mechanisms to cause a persistent, local, remodeling of their distributions in CA1 dendrites. The persistent induction of N-type calcium channels may be part of a mechanism for, and a hallmark of, synaptic plasticity, in which kindling represents a reinforcement of synapses en masse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(99)00371-1 | DOI Listing |
Eur J Orthod
December 2024
Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.
Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.
Mater Horiz
December 2024
Walter Schottky Institute, Technical University of Munich, 85748 Garching, Germany.
Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Pharmacology and Therapeutics, College of Pharmacy, University of Florida, Gainesville, United States of America.
Transl Psychiatry
December 2024
Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
Cell Commun Signal
November 2024
Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
Loss-of-function mutations in the human gene encoding the neuron-specific Ca channel Ca2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!