Increased severity of glomerulonephritis in C-C chemokine receptor 2 knockout mice.

Kidney Int

Division of Metabolic and Cardiovascular Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, USA.

Published: January 2000

Unlabelled: Increased severity of glomerulonephritis in C-C chemokine receptor 2 knockout mice.

Background: The C-C chemokine receptor 2 (CCR2) is expressed on monocytes and facilitates monocyte migration. CCR2 is a prominent receptor for monocyte chemoattractant protein-1 (MCP-1). This chemokine recruits monocytes to sites of inflammation. It has been suggested that CCR2 and its ligand, MCP-1, play a role in the pathogenesis of glomerulonephritis. The goal of this study was to determine the contribution of CCR2 in a murine model of accelerated nephrotoxic nephritis. We measured the extent of development of renal disease in CCR2 wild-type and knockout mice after the administration of antiglomerular basement membrane antibody.

Methods: Eight groups of animals were treated (N = 10 per group). Four days after IgG immunization, CCR2 wild-type and knockout mice received control serum or nephrotoxic serum. The urinary protein/creatinine ratio was measured on days 1 and 3; plasma and kidneys were collected on days 4 and 7. Kidneys were evaluated by light microscopy, immunohistochemistry, and immunofluorescence. The genotype of mice was confirmed by tissue analysis.

Results: Protective effects of CCR2 knockout on the urinary protein/creatinine ratio were observed on day 1, as values for this parameter were significantly lower (35 +/- 3.6) than in nephritic wild-type mice (50 +/- 6.8). There was a marked increase in proteinuria in nephritic wild-type mice on day 1 compared with vehicle-treated, wild-type animals (5 +/- 1.0). On day 3, the ameliorative effects of CCR2 knockout were not observed; the increase in the urinary protein/creatinine ratio was similar in nephritic CCR2 wild-type (92 +/- 11.2) and knockout mice (102 +/- 9. 2). Plasma markers of disease were evaluated on days 4 and 7. At these time points, there were no beneficial effects of CCR2 receptor knockout on plasma levels of urea nitrogen, creatinine, albumin, or cholesterol. On day 7, blood urea nitrogen (248 +/- 19.9 mg/dL) and plasma cholesterol were higher in nephritic CCR2 knockout mice than in wild-type mice (142 +/- 41.7 mg/dL) that received nephrotoxic serum. Histopathologic injury was more severe in nephritic CCR2 knockout mice than nephritic wild-type mice on day 4 (3.1 +/- 0.3 vs. 2.0 +/- 0.3) and day 7 (3.6 +/- 0.2 vs. 2.9 +/- 0.3). By immunohistochemical analysis at day 4, there were significantly fewer mac-2-positive cells, representative of macrophages in the glomeruli of nephritic CCR2 knockout (2.1 +/- 0.6) mice than nephritic wild-type (3.9 +/- 0.5) animals. By indirect immunofluorescence, there was a moderate, diffuse linear IgG deposition of equivalent severity present in glomeruli of both wild-type and CCR2 knockout nephritic mice.

Conclusion: These results suggest that our strategy was successful in reducing macrophage infiltration, but this model of glomerulonephritis is not solely dependent on the presence of CCR2 for progression of disease. After a transient ameliorative effect on proteinuria, CCR2 knockout led to more severe injury in nephritic mice. This raises the intriguing possibility that a CCR2 gene product ameliorates glomerulonephritis in this murine model. Although effects that occur in chemokine knockout mice are not equivalent to those expected with prolonged use of a chemokine antagonist, this study may nevertheless have implications for consideration of long-term use of chemokine antagonists in renal disease.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1523-1755.2000.00848.xDOI Listing

Publication Analysis

Top Keywords

knockout mice
28
ccr2 knockout
28
ccr2
17
nephritic wild-type
16
wild-type mice
16
nephritic ccr2
16
knockout
14
mice
14
+/-
13
c-c chemokine
12

Similar Publications

Background: Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and leukocytes within the arterial wall. By studying the aortic transcriptome of atherosclerosis-prone apolipoprotein E (ApoE) mice, we aimed to identify novel players in the progression of atherosclerosis.

Methods: RNA-Seq analysis was performed on aortas from ApoE and wild-type mice.

View Article and Find Full Text PDF

Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.

View Article and Find Full Text PDF

mTOR Ser1261 is an AMPK-dependent phosphosite in mouse and human skeletal muscle not required for mTORC2 activity.

FASEB J

January 2025

August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.

The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models.

View Article and Find Full Text PDF

Glucocorticoid signaling mediates lymphopoiesis impairment after cardiac arrest in mice.

J Cereb Blood Flow Metab

January 2025

Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.

Cardiac arrest (CA) is a life-threatening condition that requires immediate medical attention. Considerable advances in resuscitation have led to an increasing number of patients who survive the initial arrest event. However, among this growing patient population, morbidity and mortality rates remain strikingly high.

View Article and Find Full Text PDF

Role of GLCCI1 in inhibiting PI3K-induced NLRP3 inflammasome activation in asthma.

Chin Med J Pulm Crit Care Med

December 2024

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.

Background: Glucocorticoid-induced transcript 1 (GLCCI1) has been reported to be associated with the efficiency of inhaled glucocorticoids in patients with asthma. This study aimed to investigate the role of GLCCI1 in the regulation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) by the phosphatidylinositol 3-kinase (PI3K) pathway in the pathogenesis of allergic asthma.

Methods: The expression levels of genes encoding GLCCI1, NLRP3 inflammasome components, and PI3K pathway-related indicators were detected in cells isolated from induced sputum from patients with asthma and healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!