This paper reports the results of an investigation into the blood response of polymers in vitro, using non-anticoagulated and heparinised blood and plasma. The materials studied were regenerated cellulose, (Cuprophan), an acrylonitrile-allyl sulphonate copolymer (AN69S), and medical grade polyvinyl chloride plasticised with di-2-ethyl-hexyl-phthalate (PVC/DEHP). Blood-material or plasma-material contact was achieved using a parallel plate flow cell, and C3a generation and FXII-like activity measured. The results of the study with non-anticoagulated human blood show that PVC/DEHP is a high complement activator. C3a concentration in the blood was higher after contact with PVC/DEHP than after contact with regenerated cellulose. The introduction of heparin in the blood induced complex alterations in the blood response. C3a generation could be elevated, decreased, or remain the same, depending on the material. The FXII-like activity on the surface of the PVC/DEHP after contact with plasma was also higher than the other two polymers. The introduction of heparin could increase or decrease FXII-like activity, depending on material. The patterns of response obtained with non-anticoagulated blood in vitro for AN69S and Cuprophan bore a strong resemblance with patterns of response obtained in the clinic, whereas those obtained with heparinised blood in vitro did not.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(99)00145-3DOI Listing

Publication Analysis

Top Keywords

blood response
16
fxii-like activity
12
blood
10
investigation blood
8
medical grade
8
heparin blood
8
heparinised blood
8
regenerated cellulose
8
c3a generation
8
pvc/dehp contact
8

Similar Publications

Background: TheKeep.Ca was built to facilitate engagement with those experiencing cancer in Manitoba, Canada. Constructed between 2020 and 2024 with a group of patient advisors, the website includes information on engagement activities including research participation, the patient advisor role, and how those experiencing cancer can access these Manitoba activities.

View Article and Find Full Text PDF

Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.

View Article and Find Full Text PDF

Contribution of Blood Biomarkers to Multiple Sclerosis Diagnosis.

Neurol Neuroimmunol Neuroinflamm

March 2025

Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.

Background And Objectives: Invasive procedures may delay the diagnostic process in multiple sclerosis (MS). We investigated the added value of serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), chitinase-3-like 1 (sCHI3L1), and the immune responses to the Epstein-Barr virus-encoded nuclear antigen 1 to current MS diagnostic criteria.

Methods: In this multicentric study, we selected patients from 2 prospective cohorts presenting a clinically isolated syndrome (CIS).

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!