The centromere-kinetochore complex can be divided into distinct domains based on structure and function. Previous work has used CREST auto-antibodies with various microscopic techniques to map the locations of proteins within the centromere-kinetochore complex and to analyze the maturation of prekinetochores before mitosis. Here we have focused on the centromere-specific histone Centromere Protein (CENP)-A and its spatial relationship to other histones and histone modifications found in condensed chromatin. We demonstrate that the phosphorylation of histone H3 is essentially excluded from a specific region of centromeric chromatin, defined by the presence of CENP-A. Interspersion of CENP-B with phosphorylated H3 in the inner centromere indicates that the exclusion of H3 modification is not a general property of alpha-satellite DNA. We also demonstrate that these regions are functionally distinct by fragmenting mitotic chromatin into motile centromere-kinetochore fragments that contain CENP-A with little or no phosphorylated H3 and nonmotile fragments that contain exclusively phosphorylated H3. The sequence of CENP-A diverges from H3 in a number of key residues involved in chromosome condensation and in transcription, potentially allowing a more specialized chromatin structure within centromeric heterochromatin, on which kinetochore plates may nucleate and mature. This specialized centromere subdomain would be predicted to have a very tight and static nucleosome structure as a result of the absence of H3 phosphorylation and acetylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fasebj.13.9002.s216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!