Thousands of DNA elimination events occur during somatic differentiation of many ciliated protozoa. In Tetrahymena, the eliminated DNA aggregates into submacronuclear structures containing the protein Pdd1p, a member of the chromodomain family. We disrupted somatic copies of PDD1, eliminating parental expression of the gene early in the sexual phase of the life cycle. Even though zygotic expression, from the undisrupted germline PDD1 copy, is activated before DNA elimination normally occurs, the somatic knockout cells suffer defects in DNA elimination, genome endoduplication, and nuclear resorption, and eventually die, demonstrating that PDD1 is essential and suggesting Pdd1p is directly involved in establishing a chromatin structure required for DNA elimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1097-2765(00)80396-2 | DOI Listing |
Vaccines (Basel)
January 2025
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Background: Human papillomavirus (HPV) is a prevalent infection affecting both men and women, leading to various cytological lesions. Therapeutic vaccines mount a HPV-specific CD8+ cytotoxic T lymphocyte response, thus clearing HPV-infected cells. However, no therapeutic vaccines targeting HPV are currently approved for clinical treatment due to limited efficacy.
View Article and Find Full Text PDFDiseases
January 2025
Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
Radiation therapy or radiotherapy is a medical treatment that uses high doses of ionizing radiation to eliminate cancer cells and shrink tumors. It works by targeting the DNA within the tumor cells restricting their proliferation. Radiotherapy has been used for treating cancer for more than 100 years.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA).
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.
Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.
Objective: To assess the proportion of P.
ACS Nano
January 2025
Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China.
Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!