Although conventional cytology represents the most widely performed cytometric analysis of bladder cancer cells, DNA flow cytometry has, over the past decade, been increasingly used to evaluate cell proliferation and DNA ploidy in cells from bladder washings. We have investigated whether DNA flow cytometry and conventional cytology of epithelial cells obtained from bladder washings provide reliable surrogate endpoint biomarkers in clinical chemoprevention trials. We used cytometric and clinical data from a chemoprevention trial of the synthetic retinoid Fenretinide on 99 patients with superficial bladder cancer. A total of 642 bladder washing specimens obtained from the patients at 4 month intervals was analyzed. Intra-individual agreement and correlation of flow cytometric DNA ploidy (diploid vs. aneuploid), DNA Index, Hyper-Diploid-Fraction (proportion of cells with DNA content higher than 2C), and conventional cytologic examination, as assessed by kappa statistics and Spearman's correlation test, were poor from baseline through 24 months. Moreover, no correlation was found between DNA ploidy and cytology at each time point. The same results were obtained when the analyses were stratified by treatment group. In addition, the association between the results of bladder washing (by either DNA flow cytometry or cytology) and concomitant tumor recurrence was significant only for abnormal cytology, while neither biomarker was predictive of tumor recurrence at the subsequent visit. During the time of this study only four patients progressed to muscle-invasive bladder cancer, indicating the "low-risk" features of the patient population. We conclude that DNA flow cytometry and conventional cytology on epithelial cells obtained from bladder washings do not appear to provide suitable surrogate endpoint biomarkers during the early stages of bladder carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-4644(20000201)76:2<311::aid-jcb14>3.0.co;2-aDOI Listing

Publication Analysis

Top Keywords

dna flow
20
flow cytometry
20
bladder cancer
16
conventional cytology
12
dna ploidy
12
cells bladder
12
bladder washings
12
bladder
10
dna
9
chemoprevention trial
8

Similar Publications

Ginkgolide B regulates apoptosis, oxidative stress, and mitochondrial dysfunction in MPP-induced SK-N-SH cells by targeting HDAC4/JNK pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Huai'an Hospital Affiliated to Yangzhou University, The Fifth People's Hospital of Huai'an), 1 Huaihe East Road, Huaiyin District, Huai'an City, Jiangsu Province, China.

Ginkgolide B (GB) is a bioactive constituent found in Ginkgo biloba leaves that has been long recognized as a protective agent against many neurological disorders. Our study aimed to examine the effect of GB in an in vitro Parkinson's disease (PD) model and to investigate its neuroprotective mechanism as a primary objective. SK-N-SH cells were challenged with 1-methyl-4-phenylpyridinium (MPP) to act as a PD-like model of neuronal damage.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.

View Article and Find Full Text PDF

Background: Chitosan nanoparticles (CsNPs) are an effective and inexpensive approach for DNA delivery into live cells. However, most CsNP synthesis protocols are not optimized to allow long-term storage of CsNPs without loss of function. Here, we describe a protocol for CsNP synthesis, lyophilization, and sonication, to store CsNPs and maintain transfection efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!