Interaction of Escherichia coli inorganic pyrophosphatase active sites.

FEBS Lett

A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.

Published: December 1999

Escherichia coli inorganic pyrophosphatase (PPase) is a hexamer of identical subunits. This work shows that trimeric form of PPase exhibits the interaction of the active sites in catalysis. Some trimer subunits demonstrate high substrate binding affinity typical for hexamer whereas the rest of subunits reveal more than 300-fold substrate affinity decrease. This fact indicates the appearance of negative cooperativity of trimer subunits upon substrate binding. Association of the wild-type (WT) trimer with catalytically inactive, but still substrate binding mutant trimer into hexameric chimera restores the high activity of the first trimer, characteristic of trimer incorporated in the hexamer of WT PPase. Interaction of PPase active sites suggests that there are pathways for information transmission between the active sites, providing the perfect organization and concerted functioning of the hexameric active sites in catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(99)01686-5DOI Listing

Publication Analysis

Top Keywords

active sites
20
substrate binding
12
escherichia coli
8
coli inorganic
8
inorganic pyrophosphatase
8
sites catalysis
8
trimer subunits
8
trimer
6
active
5
sites
5

Similar Publications

Coumarin Analogues as Promising Anti-Obesity Agents: In Silico Design, Synthesis, and In Vitro Pancreatic Lipase Inhibitory Activity.

Chem Biol Drug Des

January 2025

Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.

A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.

View Article and Find Full Text PDF

Prokaryotic heme biosynthesis in Gram-positive bacteria follows the coproporphyrin-dependent heme biosynthesis pathway. The last step in this pathway is catalyzed by the enzyme coproheme decarboxylase, which oxidatively transforms two propionate groups into vinyl groups yielding heme b. The catalytic reaction cycle of coproheme decarboxylases exhibits four different states: the apo-form, the substrate (coproheme)-bound form, a transient three-propionate intermediate form (monovinyl, monopropionate deuteroheme; MMD), and the product (heme b)-bound form.

View Article and Find Full Text PDF

Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.

View Article and Find Full Text PDF

Modulation of electronic spin states in cobalt-based catalysts is an effective strategy for molecule activations. Crystalline-amorphous interfaces often exhibit unique catalytic properties due to disruptions of long-range order and alterations in electronic structure. However, the mechanisms of molecule activation and spin states at interfaces remain elusive.

View Article and Find Full Text PDF

The process of regenerating bone injuries in diabetic presents significant challenges because lysine oxidase (LOX), a key catalytic enzyme for collagen cross-linking, is inhibited in hyperglycemia. The supplementation of LOX is constrained by inadequate sources and diminished enzymatic activity, necessitating the development of effective alternatives for enhancing bone regeneration in diabetes. Herein, we reported a lysyl oxidase nanozyme (LON), derived from the catalytic domain of LOX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!