Several studies and observations of a new form of motion capture are reported: frames containing identical rows of evenly spaced vertical lines are alternated in a standard apparent-motion paradigm. However, one vertical line in the first frame has short horizontal 'terminators' attached; the terminators are shifted to a different line in the second frame. Alternation that includes an unpatterned, nonzero interstimulus interval results in perceived motion of a vertical line along with the terminators. This motion can 'cross over' other stationary vertical lines and persists when light-filled interstimulus intervals and gaps between lines and terminators are introduced. It can also be obtained with different line sizes and spacings. The present motion capture does not appear to rely on a global-frame effect. Alternative explanations are considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1068/p2890 | DOI Listing |
J Biomech
January 2025
Department of Kinesiology, McMaster University, Hamilton, ON, Canada. Electronic address:
Recording and quantifying hand and finger movement is essential for understanding the neuromechanical control of the hand. Typically, kinematics are collected through marker-based optoelectronic motion capture systems. However, marker-based systems are time-consuming to setup, expensive, and cumbersome, especially for finger tracking.
View Article and Find Full Text PDFSports Biomech
January 2025
School of Health and Sport Sciences, Chukyo University, Aichi, Japan.
The orientation and rear legs have different roles in the spike jump (SPJ) in volleyball, yet the relationship between the jump height and kinetics of each leg remains underexplored. We aimed to clarify the relationships between jump height and kinetics of the orientation and rear legs in the SPJ. This study included 18 female college volleyball players.
View Article and Find Full Text PDFSports Biomech
January 2025
Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
It is well-known among swimmers and coaches that the swimming speed of the underwater dolphin kick (UDK) is higher than that of the underwater flutter kick (UFK). This study aimed to clarify the differences in swimming performance between the two kicking styles in terms of kinematics, kinetics and muscle activity. Eight male swimmers performed UDK and UFK in a water flume at same effort levels.
View Article and Find Full Text PDFSci Rep
January 2025
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
This study presents an advanced dynamic finite element (FE) model of multiple components of the breast to examine the biomechanical impact of different types of physical activities and activity intensity on the breast tissues. Using 4D scanning and motion capture technologies, dynamic data are collected during different activities. The accuracy of the FE model is verified based on relative mean absolute error (RMAE), and optimal material parameters are identified by using a validated stepwise grid search method.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
The development of aggregation-induced emission (AIE) luminophores is a fascinating and promising topic in electrochemiluminescence (ECL) bioanalysis. Herein, the AIE-active but water-insoluble [Ir(bt)₂(acac)] (bt = 2-phenylbenzothiazole, acac = acetylacetonate) was encapsulated within poly(styrene-maleic anhydride) (PSMA) using a simple nanoprecipitation method. This encapsulation strategy could effectively limit the free motion of Ir(bt)₂(acac) and trigger the aggregation-induced electrochemiluminescence (AIECL) effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!