Two temperature-sensitive mutations in the DNA binding subunit of EcoKI with differing properties.

FEMS Microbiol Lett

Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220, Prague, Czech Republic.

Published: January 2000

Two temperature-sensitive mutations in the hsdS gene, which encodes the DNA specificity subunit of the type IA restriction-modification system EcoKI, designated Sts1 (Ser(340)Phe) and Sts2 (Ala(204)Thr) had a different impact on restriction-modification functions in vitro and in vivo. The enzyme activities of the Sts1 mutant were temperature-sensitive in vitro and were reduced even at 30 degrees C (permissive temperature). Gel retardation assays revealed that the Sts1 mutant had significantly decreased DNA binding, which was temperature-sensitive. In contrast the Sts2 mutant did not show differences from the wild-type enzyme even at 42 degrees C. Unlike the HsdSts1 subunit, the HsdSts2 subunit was not able to compete with the wild-type subunit in assembly of the restriction enzyme in vivo, suggesting that the Sts2 mutation affects subunit assembly. Thus, it appears that these two mutations map two important regions in HsdS subunit responsible for DNA-protein and protein-protein interactions, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2000.tb08881.xDOI Listing

Publication Analysis

Top Keywords

temperature-sensitive mutations
8
dna binding
8
sts1 mutant
8
subunit assembly
8
subunit
7
temperature-sensitive
4
mutations dna
4
binding subunit
4
subunit ecoki
4
ecoki differing
4

Similar Publications

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Gene variants resulting in insertions or deletions of amino acid residues (indels) have important consequences for evolution and are often linked to disease, yet, compared to missense variants, the effects of indels are poorly understood and predicted. We developed a sensitive protein folding sensor based on the complementation of uracil auxotrophy in yeast by circular permutated orotate phosphoribosyltransferase (CPOP). The sensor reports on the folding of disease-linked missense variants and de-novo-designed proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The Arabidopsis var2 mutant, which lacks functional FtsH2, is key for studying the repair process of photosystem II (PSII) in plants.
  • Under cold stress, var2 mutants struggle due to increased membrane viscosity, highlighting the essential need for FtsH2's substrate extraction activity to manage this condition.
  • In contrast, during heat stress, the mutant behaves like normal plants, as increased membrane fluidity allows other FtsH isomers to compensate for the lack of FtsH2, indicating that membrane fluidity significantly affects the function of the FtsH complex under various stress conditions.
View Article and Find Full Text PDF

Genetic and molecular studies of fitC4 and its suppressors fitA76* and fit95 in Escherichia coli.

Int Microbiol

December 2024

Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.

The fitA/pheS and fitB/pheT genes were previously proposed to function as transcription factors. The originally identified temperature sensitive (Ts) transcription-defective fitA76 mutant was shown to harbour a second mutation, fit95 (pheT) in addition to pheS5 (pheS; G → A transition). A new fit mutation namely, fitC4 (fitC locus) was identified in a Ts derivative of fitA76, namely JV4.

View Article and Find Full Text PDF

Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!