To study DNA double-strand break (DSB) repair in mammalian cells, the Saccharomyces cerevisiae HO endonuclease gene, or its recognition site, was cloned into the adenovirus E3 or E1 regions. Analysis of DNA from human A549 cells coinfected with the E3::HO gene and site viruses showed that HO endonuclease was active and that broken viral genomes were detectable 12 h postinfection, increasing with time up to approximately 30% of the available HO site genomes. Leftward fragments of approximately 30 kbp, which contain the packaging signal, but not rightward fragments of approximately 6 kbp, were incorporated into virions, suggesting that broken genomes were not held together tightly after cleavage. There was no evidence for DSB repair in E3::HO virus coinfections. In contrast, such evidence was obtained in E1::HO virus coinfections of nonpermissive cells, suggesting that adenovirus proteins expressed in the permissive E3::HO coinfection can inhibit mammalian DSB repair. To test the inhibitory role of E4 proteins, known to suppress genome concatemer formation late in infection (Weiden and Ginsberg, 1994), A549 cells were coinfected with E3::HO viruses lacking the E4 region. The results strongly suggest that the E4 protein(s) inhibits DSB repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/viro.1999.0062 | DOI Listing |
NPJ Precis Oncol
January 2025
Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Pancreatic ductal adenocarcinoma (PDAC) is notably resistant to conventional chemotherapy and radiation treatment. However, clinical trials indicate that carbon ion radiotherapy (CIRT) with concurrent gemcitabine is effective for unresectable locally advanced PDAC. This study aimed to identify patient characteristics predictive of CIRT response.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.
Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.
View Article and Find Full Text PDFStructural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes.
View Article and Find Full Text PDFHeliyon
January 2025
Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation.
View Article and Find Full Text PDFCytokine Growth Factor Rev
January 2025
Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan. Electronic address:
Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!