Calcitonin secretion by C-cells is mediated through intracellular 3'5'-cyclic adenosine monophosphate (cAMP) and calcium signaling. Calcitonin release stimulation tests may take advantage of both signaling cascades in screening for medullary thyroid carcinomas (MTC). To elucidate the regulation of the adenylyl cyclase system we have determined cAMP levels of a calcitonin-expressing MTC cell line (RG) after exposure to adrenergic agents and prostaglandines. In early passages (20-30) cAMP concentrations were significantly elevated in RG cells after exposure to beta-adrenergic agents and prostaglandines E1 and E2. In advanced passages (60-80) the beta-adrenergic response was no longer detectable and adrenergic receptors were uncoupled from the adenylyl cyclase complex; while the effect of prostaglandines E1 and E2 remained unaffected. Preincubation with dexamethasone, in a process requiring protein new synthesis, re-established the adrenergic response in later passages, indicating that RG cells dedifferentiated in culture over time. Our in vitro findings suggest that MTC cell dedifferentiation may be accompanied by adrenergic receptor-uncoupling from the adenylate cyclase system and that this process may be reversed by dexamethasone incubation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0029-1232557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!