Is the mouse a clinically relevant model for human fertilization failures?

Hum Reprod

Boston College, Chestnut Hill, MA 02167 and Boston IVF, Beth Israel Hospital, Brookline, MA 02146, USA.

Published: January 2000

This study compares failed fertilization oocytes from patients participating in an in-vitro fertilization (IVF) programme with failed fertilization oocytes from B6SJLF(1)/J mice, in order to characterize and describe the distribution of DNA in oocytes that do not undergo normal fertilization. Our goal is to evaluate the mouse IVF system as a model to gain insight into reasons for human fertilization failures. All oocytes were stained with the vital fluorescent dye, Hoechst 33342, which rapidly stains double-stranded DNA. Of the 237 human oocytes that had been scored as failed fertilization by brightfield microscopy, 61 (25.7%) showed the presence of at least one spermatozoon within the oocyte cytoplasm. In contrast, out of 69 failed fertilization mouse oocytes, only one oocyte showed the presence of a spermatozoon within its cytoplasm. Mouse failed fertilization oocytes exhibited a significantly lower internal sperm rate (P < 0.0001) than human failed fertilization oocytes. Human failed fertilization oocytes show a higher incidence of sperm penetration, but the cytoplasm fails to support pronuclear development, whereas, at least in this strain, mouse failed fertilization oocytes arise from an inability of the spermatozoa to penetrate the oocyte. This study suggests that the mouse is not a clinically relevant model for human fertilization failures.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/15.1.171DOI Listing

Publication Analysis

Top Keywords

failed fertilization
32
fertilization oocytes
24
fertilization
13
human fertilization
12
oocytes
10
mouse clinically
8
clinically relevant
8
relevant model
8
model human
8
failed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!