Fabry disease, caused by a deficiency of lysosomal enzyme alpha-galactosidase A (alpha-gal A), is one of the inherited disorders potentially treatable by gene transfer to hematopoietic stem cells. In this study, a high-titer amphotropic retroviral producer cell line, MFG-alpha-gal A, was established. CD34+ cells from normal umbilical cord blood were transduced by centrifugal enhancement. The alpha-gal A activity in transduced cells increased 3.6-fold above the activity in nontransduced cells. Transduction efficiency measured by PCR for the integrated alpha-gal A cDNA in CFU-GM colonies was in the range of 42-88% (average, 63%). The expression of functional enzyme in TFI erythroleukemia was sustained for as long as cells remained in culture (84 days) and for 28 days in LTC-IC cultures of CD34+ cells. The ability of the transduced CD34+ cells to secrete the enzyme and to correct enzyme-deficient Fabry fibroblasts was assessed by cocultivation of these cells. The enzyme was secreted into the medium from transduced CD34+ cells and taken up by Fabry fibroblasts through mannose 6-phosphate receptors. These findings suggest that genetically corrected hematopoietic stem/progenitor cells can be an enzymatic source for neighboring enzyme-deficient cells, and can potentially be useful for gene therapy of Fabry disease.

Download full-text PDF

Source
http://dx.doi.org/10.1089/10430349950016302DOI Listing

Publication Analysis

Top Keywords

cd34+ cells
16
cells
12
cells fabry
8
fabry disease
8
transduced cd34+
8
fabry fibroblasts
8
cd34+
5
retrovirus-mediated transfer
4
transfer human
4
human alpha-galactosidase
4

Similar Publications

Mammalian red blood cells are generated via a terminal erythroid differentiation pathway culminating in cell polarization and enucleation. Actin filament polymerization is critical for enucleation, but the molecular regulatory mechanisms remain poorly understood. We utilized publicly available RNA-seq and proteomics datasets to mine for actin-binding proteins and actin- nucleation factors differentially expressed during human erythroid differentiation and discovered that a focal adhesion protein-Tensin-1-dramatically increases in expression late in differentiation.

View Article and Find Full Text PDF

PLK1 inhibition impairs erythroid differentiation.

Front Cell Dev Biol

December 2024

School of Life Sciences, Zhengzhou University, Zhengzhou, China.

Polo-like kinase 1 (PLK1), a key regulator of the G2/M phase in mitosis, is frequently overexpressed in numerous tumors. Although PLK1 inhibitors have emerged as promising therapeutic agents for cancer, their use has been linked to significant anemia in a subset of patients, yet the underlying mechanisms remain poorly understood. In this study, we utilized an human umbilical cord blood-derived CD34 cell-based erythroid differentiation system, alongside a murine model, to investigate the impact of PLK1 inhibitors on erythropoiesis.

View Article and Find Full Text PDF

Background: Germline haplodeficiency (RHD) is associated with thrombocytopenia, platelet dysfunction and predisposition to myeloid malignancies. Platelet expression profiling of a RHD patient showed decreased encoding for the A subunit of factor XIII, a transglutaminase that cross-links fibrin and induces clot stabilization. FXIII-A is synthesized by hematopoietic cells, megakaryocytes and monocytes.

View Article and Find Full Text PDF

We studied the effect of reprogrammed CD8 T cells (rT cells) from the bone marrow of intact mice on tumor cells and neovasculogenesis in mice with orthotopic Lewis lung carcinoma (LLC). Reprogramming of T cells was carried out using a MEK inhibitor and a PD-1 blocker; the targeting of rT cells to tumor cells was achieved by preincubation with LLC cell lysate. It was shown that the antitumor effect of rT cells was based on apoptosis of tumor cells.

View Article and Find Full Text PDF

Aims: Extragonadal yolk sac tumour (YST) is rare, and may present a diagnostic challenge. YST differentiation was recently reported in some somatically derived tumours in the sinonasal location and in the female genital tract, together with a SMARCB1/INI1 loss. We report two paratesticular/inguinal tumours with striking morphological and immunohistochemical similarities with YST, further expanding the spectrum of extragonadal tumours with YST-like morphology and SMARCB1/INI1 loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!