Collagen fibril aggregation-inhibitor from sea cucumber dermis.

Matrix Biol

Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.

Published: December 1999

Collagen fibrils from the dermis of the sea cucumber Cucumaria frondosa are aggregated in vitro by the dermal glycoprotein stiparin (Trotter et al., 1996). Under physiological ionic conditions stiparin appears to be both necessary and sufficient to cause fibrils to aggregate (Trotter et al., 1997). We report here the initial biochemical and biophysical characterization of a sulfated glycoprotein from C. frondosa dermis that binds stiparin and inhibits its fibril-aggregating activity. This inhibitory glycoprotein, which has been named 'stiparin-inhibitor,' has the highest negative charge density of all the macromolecules extracted from the dermis. SDS-PAGE reveals three approximately 31-kDa bands that stain with alcian blue but not with Coomassie blue. Analytical ultracentrifugation indicates a native molecular weight of 62 kDa. Transmission electron microscopy of rotary-shadowed molecules shows curved rods about 22 nm long. The glycoprotein does not bind collagen fibrils, but does bind stiparin with a 1:1 stoichiometry. The binding of stiparin-inhibitor to stiparin prevents the binding of stiparin to collagen fibrils. The carbohydrate moiety produced by papain-digestion of the glycoprotein retains all of its inhibitory activity. The carbohydrate moiety of the inhibitor is dominated by galactose and sulfate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0945-053x(99)00050-5DOI Listing

Publication Analysis

Top Keywords

collagen fibrils
12
sea cucumber
8
carbohydrate moiety
8
stiparin
6
glycoprotein
5
collagen
4
collagen fibril
4
fibril aggregation-inhibitor
4
aggregation-inhibitor sea
4
dermis
4

Similar Publications

Mutations in the collagen-modifying enzyme lysyl hydroxylase 1 (LH1) cause Warmblood Fragile Foal Syndrome (WFFS) in horses. We investigated the impact of this mutation on collagen structure and function. Our results show that LH1 deficiency leads to reduced lysine hydroxylation, altered collagen fibril organization, and tissue abnormalities resembling human Ehlers-Danlos syndrome.

View Article and Find Full Text PDF

HEMA-free versus HEMA-containing adhesive systems: a systematic review.

Syst Rev

January 2025

Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Postal Code, 35516, Egypt.

Background: Hydrophilic monomer 2-hydroxyethyl methacrylate (HEMA)-free adhesive systems are gaining increasing popularity nowadays. Although the addition of HEMA to dental adhesives improves dentin wettability and resin diffusion into demineralized collagen fibrils, HEMA's high hydrophilicity can lead to hydrolytic degradation of the adhesive interface. Thus, HEMA-free adhesive systems have been developed.

View Article and Find Full Text PDF

Atrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated.

View Article and Find Full Text PDF

Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured . During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released.

View Article and Find Full Text PDF

Aging-Induced Discrepant Response of Fracture Healing is Initiated from the Organization and Mineralization of Collagen Fibrils in Callus.

ACS Biomater Sci Eng

January 2025

Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.

Fracture healing is a complex process during which the bone restores its structural and mechanical integrity. Collagen networks and minerals are the fundamental components to rebuild the bone matrix in callus. It has been recognized that bone quality could be impaired during aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!