A combination of electron paramagnetic resonance (EPR) spectroscopy and analytical chemistry has been used to study the changes in free radical content, transition metal ion status and lipid peroxidation following inoculation of fruits of sweet pepper (Capsicum annuum) with Botrytis cinerea. EPR detected a high concentration of an unidentified free radical associated with the spreading lesion that extends into the surrounding, healthy tissues. In addition, the EPR-detectable iron(III) was highest at the centre of the lesion, again displaying a gradient out into the surrounding tissues. Analyses for aldehydic products of lipid peroxidation were performed to assess the accumulation and potential of these compounds to contribute to the cell death associated with necrotrophic pathogens. In contrast to the spectrum of aldehydes typically observed within peroxidized biological samples, no accumulation of malondialdehyde nor n-hexanal was observed. Instead, high levels of two hydroxyalkenals (4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal) were detected at concentra- tions up to 4000 and 20 000 pmol g- 1, respectively, at the host-pathogen interface. These results are discussed in terms of the likely mechanisms of formation of these aldehydes.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-313x.1999.00622.xDOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
12
capsicum annuum
8
annuum botrytis
8
botrytis cinerea
8
free radical
8
peroxidation oxidative
4
oxidative burst
4
burst associated
4
associated infection
4
infection capsicum
4

Similar Publications

Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.

View Article and Find Full Text PDF

Fish oil-loaded silver carp scale gelatin-stabilized emulsions with vitamins for the delivery of curcumin.

NPJ Sci Food

January 2025

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

The encapsulation of curcumin in the emulsions has attracted much attention in functional food development. Herein, the fish oil-loaded silver carp scale gelatin-stabilized emulsions with vitamins were explored for the delivery of curcumin. The curcumin encapsulation had no obvious effect on the formation, storage stability, lipid oxidation, and in vitro droplet digestion behaviors of the emulsions.

View Article and Find Full Text PDF

Neglecting proper skin care and repeated exposure to ultraviolet (UV) radiation can have serious consequences, including skin burns, photoaging and even the development of skin cancer. UV radiation-induced damage is mediated by highly unstable and reactive molecules, named reactive oxygen species (ROS). To counteract ROS, the skin has an endogenous antioxidant system.

View Article and Find Full Text PDF

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!