Adaptation to intermittent hypoxia can enhance a hypoxic ventilatory response (HVR) in healthy humans. Naturally occurring oscillations in blood dopamine (DA) level may modulate these responses. We have measured ventilatory response to hypoxia relative to blood DA concentration and its precursor DOPA before and after a 2-week course of intermittent hypoxic training (IHT). Eighteen healthy male subjects (mean 22.8+/-2.1 years old) participated in the study. HVRs to isocapnic, progressive, hypoxic rebreathing were recorded and analyzed using piecewise linear approximation. Rebreathing lasted for 5-6 min until inspired O2 reached 8 to 7%. IHT consisted of three identical daily rebreathing sessions separated by 5-min breaks for 14 consecutive days. Before and after the 2-week course of IHT, blood was sampled from the antecubital vein to measure DA and DOPA content. The investigation associated pretraining high blood DA and DOPA values with low HVR (r = -0.66 and -0.75, respectively), elevated tidal volume (r = 0.58 and 0.37) and vital capacity (r = 0.69 and 0.58), and reduced respiratory frequency (r = -0.89 and -0.82). IHT produced no significant change in ventilatory responses to mild hypoxic challenge (Peto2 from 110 to 70-80 mm Hg; 1 mm Hg = 133.3 Pa) but elicited a 96% increase in ventilatory response to severe hypoxia (from 70-80 to 45 mm Hg). Changes in HVRs were not accompanied by statistically significant shifts in blood DA content (24% change), although a twofold increase in DOPA concentration was observed. Individual subject's changes in DA and DOPA content were not correlated with HVR changes when these two parameters were evaluated in relation to the IHT. We hypothesize that DA flowing to the carotid body through the blood may provoke DA autoreceptor-mediated inhibition of endogenous DA synthesis-release, as shown in our baseline data.
Download full-text PDF |
Source |
---|
Respir Physiol Neurobiol
December 2024
Department of Biology, Bates College, Lewiston, ME 04240, USA.
Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60 % O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.
View Article and Find Full Text PDFJ Pers Med
December 2024
Neonatal and Pediatric Intensive Care Unit, University Hospital of Messina, 98124 Messina, Italy.
A controversial aspect of pediatric septic shock management is corticosteroid therapy. Current guidelines do not recommend its use in forms responsive to fluids and inotropes but leave the decision to physicians in forms refractory to the first steps of therapy. Review of literature from January 2013 to December 2023 from online libraries Pubmed, Medline, Cochrane Library, and Scopus.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2024
The author is retired. The positions and affiliations are those prior to his retirement.
Important insights and consensus remain lacking for risk prediction of opioid-induced respiratory depression (OIRD), reversal of respiratory depression (RD), the pathophysiology of OIRD, and which sites make the most significant contribution to its induction. The ventilatory response to inhaled carbon dioxide is the most sensitive biomarker of OIRD. To accurately predict respiratory depression (RD), a multivariant RD prospective trial using continuous capnograph and oximetry examining 5 independent variables: age ≥60, sex, opioid naivety, sleep disorders, and chronic heart failure (PRODIGY trial), was undertaken.
View Article and Find Full Text PDFInt J Cardiol Congenit Heart Dis
December 2024
Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
Background: Change in the oxygen consumption (VO) at the ventilatory anaerobic threshold (VAT) is an important outcome in research studies of children with congenital heart disease (CHD). The range of values reported by different raters for any given VAT is needed to contextualize a change in VAT in intervention studies.
Methods: Sixty maximal cardiopulmonary exercise tests (CPET) for CHD patients 8-21 years old were independently reviewed by six exercise physiologists and four pediatric cardiologists.
Acute hypoxic ventilatory response is an important reflex that helps maintain breathing during low oxygen levels, but it is attenuated by most general anaesthetics. Analgesic doses of ketamine and esketamine are known to have respiratory stimulant effects. In their recent study in the British Journal of Anaesthesia, Jansen and colleagues show that low-dose esketamine preserved the acute hypoxic ventilatory response, while increasing breathing rate, systolic blood pressure, and heart rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!