Osteogenic sarcoma is the most common malignant tumor of the mandible. It is less aggressive than osteogenic sarcoma of the long bones, and mortality is often due to local persistence or intracranial extension. We report such a case to emphasize that disarticulation of the mandible is necessary, since clinical and pathologic evaluation of tumor extent may be impossible. Except for parasymphysial lesions, disarticulation with midline hemimandibulectomy and frozen section assessment of all margins is recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archotol.1975.00780410053012 | DOI Listing |
Discov Nano
January 2025
School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
The Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
Background: Extraskeletal osteosarcoma (ESOS) is a rare kind of sarcoma with a low preoperative diagnosis and a poor prognosis. ESOS arising from abdominal mesentery is extremely rare. Increasing diagnostic methods and standardizing treatment protocols are crucial issues of ESOS.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Single-cell RNA sequencing (scRNA-seq) has transformed biological research by offering new insights into cellular heterogeneity, developmental processes, and disease mechanisms. As scRNA-seq technology advances, its role in modern biology has become increasingly vital. This study explores the application of deep learning to single-cell data clustering, with a particular focus on managing sparse, high-dimensional data.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
Structured illumination microscopy (SIM) is a robust wide-field optical nanoscopy technique. Several approaches are implemented to improve SIM's resolution capability (∼2-fold). However, achieving a high resolution with a large field of view (FOV) is still challenging.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:
Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!