Structural studies on phospholamban and implications for regulation of the Ca(2+)-ATPase.

Ann N Y Acad Sci

Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, United Kingdom.

Published: September 1998

The cardiac sarcoplasmic reticulum (SR) protein phospholamban (PLB) is an endogenous inhibitor of the SR Ca(2+)-ATPase. Phosphorylation of PLB relieves this inhibition and up-regulates calcium transport. PLB has proved remarkably difficult to study by conventional solution-state nuclear magnetic resonance (NMR) methods, due primarily to the extreme hydrophobic nature of the protein and its propensity to form pentamers. That the C-terminal domain of PLB is helical and membrane spanning is now well established; the structure of the cytoplasmic domain is relatively ill defined. In order to discern the effect of phosphorylation on the structure of the cytoplasmic domain, we have characterized a variety of model peptides in several structure-inducing and/or lipid-mimicking environments using circular dichroism and solution-state NMR. The resolution of peptide structures obtained in aqueous trifluoroethanol was markedly improved by the incorporation of 15N labels into the peptide backbone, allowing a variety of isotope edited, filtered, and resolved techniques to be applied. Molecular dynamics simulations on the full-length protein were combined with an analysis of published data to suggest a revised model for the structure of PLB.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1998.tb08257.xDOI Listing

Publication Analysis

Top Keywords

structure cytoplasmic
8
cytoplasmic domain
8
plb
5
structural studies
4
studies phospholamban
4
phospholamban implications
4
implications regulation
4
regulation ca2+-atpase
4
ca2+-atpase cardiac
4
cardiac sarcoplasmic
4

Similar Publications

Protein translocation across cellular membranes is an essential and nano-scale dynamic process. In the bacterial cytoplasmic membrane, the core proteins in this process are a membrane protein complex, SecYEG, corresponding to the eukaryotic Sec61 complex, and a cytoplasmic protein, SecA ATPase. Despite more than three decades of extensive research on Sec proteins, from genetic experiments to cutting-edge single-molecule analyses, no study has visually demonstrated protein translocation.

View Article and Find Full Text PDF

The influence of temperature induced changes in the composition of MFGM on membrane phase transition and nanomechanical properties.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China. Electronic address:

Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE.

View Article and Find Full Text PDF

To get insight into the thawing and salting in recovery and protection mechanisms on quality in frozen meat after subsequent cooking. The myofiber morphological-water evolution and quality changes in beef during freezing-thawing-cooking and freezing-cooking treatments were investigated. The cooking losses of fresh-cooked, frozen-cooked, and frozen-thawed-cooked samples were 27.

View Article and Find Full Text PDF

Changes of shrimp myofibrillar proteins hydrolyzed by Virgibacillus proteases: Structural characterization, mechanism visualization, and flavor compound formation.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, China; Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 31200, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing 646000, Zhejiang, China. Electronic address:

To explore the mechanism of Virgibacillus proteases on hydrolysis of shrimp myofibrillar protein (SMP) and formation of volatile compounds, the fermented broth of Virgibacillus halodenitrificans was purified and the protease was identified as peptidase S8. The enzyme had optimum activity at pH 7.0-8.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) has recently emerged as an insidiously and increasingly prevalent heart failure phenotype. HFpEF often occurs in the context of hypertension and obesity and presents with diastolic dysfunction, ventricular hypertrophy, and myocardial fibrosis. Despite growing study of HFpEF, the causal links between early metabolic changes, bioenergetic perturbations, and cardiac structural remodeling remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!