This article reports the results of an experimental study undertaken to investigate the effect of spatial arrangement of assembly board and parts bin in the normal work area on work-cycle time in manual assembly tasks. Operator performance was measured in terms of average work-cycle time taken to complete a laboratory-simulated manual assembly task. Results showed that both location and distance factors had significant effects on work-cycle time. Effect of the size of parts was also investigated in the study. Average observed work-cycle times were compared with the methods-time measurement (MTM) values. Repetitive manual assembly tasks are common in industry and are thought to lead to musculoskeletal disorders. The results of this research are important for ergonomic design of the workplace for assembly tasks, which would help to enhance operators' efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10803548.1995.11076310DOI Listing

Publication Analysis

Top Keywords

manual assembly
16
assembly tasks
16
work-cycle time
16
spatial arrangement
8
assembly
6
work-cycle
5
workplace design
4
manual
4
design manual
4
tasks
4

Similar Publications

Haplotyped-resolved phased assemblies aim to capture the full allelic diversity in heterozygous and polyploid species to enable accurate genetic analyses. However, building non-collapsed references still presents a challenge. Here, we used long-range interaction Hi-C reads (high-throughput chromatin conformation capture) and HiFi PacBio reads to assemble the genome of the apomictic cultivar Basilisks from Urochloa decumbens (2n = 4x = 36), an outcrossed tetraploid Paniceae grass widely cropped to feed livestock in the tropics.

View Article and Find Full Text PDF

Transcatheter Aspiration of Tricuspid Vegetation.

JACC Case Rep

December 2024

Jesselson Integrated Heart Center, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

Objective: This study sought to present the endovascular approach of transcatheter aspiration using the FlowTriever (Inari Medical) aspiration system for high surgical risk patients with right-sided infective endocarditis.

Key Steps: General anesthesia and transesophageal echocardiogram guidance; ultrasonography-guided femoral vein access, preclosure sutures, and insertion of a 24-F sheath; insertion of straight 24-F aspiration cannula over a stiff wire, parked in the superior vena cava; introduction of a 20-F curved cannula inside the 24-F cannula to create a telescopic assembly; accurate positioning using the right ventricle inflow/outflow projection in biplane mode; adjustment of the curved cannula radius by sliding the inner cannula in and out inside the mother cannula; manual aspiration of the vegetation; Postaspiration transesophageal echocardiogram assessment.

Potential Pitfalls: Avoid leaflet and annular injury and account for potential embolization.

View Article and Find Full Text PDF

Accelerating the Discovery of Abiotic Vesicles with AI-Guided Automated Experimentation.

Langmuir

January 2025

Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, The Bronx, New York 10458, United States.

The first protocells are speculated to have arisen from the self-assembly of simple abiotic carboxylic acids, alcohols, and other amphiphiles into vesicles. To study the complex process of vesicle formation, we combined laboratory automation with AI-guided experimentation to accelerate the discovery of specific compositions and underlying principles governing vesicle formation. Using a low-cost commercial liquid handling robot, we automated experimental procedures, enabling high-throughput testing of various reaction conditions for mixtures of seven (7) amphiphiles.

View Article and Find Full Text PDF

Motivation: Recent advancements in parallel sequencing methods have precipitated a surge in publicly available short-read sequence data. This has encouraged the development of novel computational tools for the de novo assembly of transcriptomes from RNA-seq data. Despite the availability of these tools, performing an end-to-end transcriptome assembly remains a programmatically involved task necessitating familiarity with best practices.

View Article and Find Full Text PDF

Given the presence of highly repetitive genomic regions such as subtelomeric regions, understanding human genomic evolution remains challenging. Recently, long-read sequencing technology has facilitated the identification of complex genetic variants, including structural variants (SVs), at the single-nucleotide level. Here, we resolved SVs and their underlying DNA damage-repair mechanisms in subtelomeric regions, which are among the most uncharted genomic regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!