Real-time, sequence-specific detection of nucleic acids during strand displacement amplification.

Anal Biochem

Department of Life Sciences, Becton Dickinson Technologies, 21 Davis Drive, Research Triangle Park, North Carolina 27709, USA.

Published: December 1999

Strand displacement amplification (SDA) is an isothermal nucleic acid amplification method based on the primer-directed nicking activity of a restriction enzyme and the strand displacement activity of an exonuclease-deficient polymerase. Here we describe fluorogenic reporter probes that permit real-time, sequence-specific detection of targets amplified during SDA. The new probes possess the single-strand half of a BsoBI recognition sequence flanked on opposite sides by a fluorophore and a quencher. The probes also contain target-binding sequences located 3' to the BsoBI site. Fluorophore and quencher are maintained in sufficiently close proximity that fluorescence is quenched in the intact single-stranded probe. If target is present during SDA, the probe is converted into a fully double-stranded form and is cleaved by the restriction enzyme BsoBI, which also serves as the nicking agent for SDA. Fluorophore and quencher diffuse apart upon probe cleavage, causing increased fluorescence. Target replication may thus be followed in real time during the SDA reaction. Probe performance may be enhanced by embedding the fluorogenic BsoBI site within the loop of a folded hairpin structure. The new probe designs permit detection of as few as 10 target copies within 30 min in a closed-tube, real-time format, eliminating the possibility of carry-over contamination. The probes may be used to detect RNA targets in SDA mixtures containing reverse transcriptase. Furthermore, a two-color competitive SDA format permits accurate quantification of target levels from the real-time fluorescence data.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abio.1999.4350DOI Listing

Publication Analysis

Top Keywords

strand displacement
12
fluorophore quencher
12
real-time sequence-specific
8
sequence-specific detection
8
displacement amplification
8
restriction enzyme
8
bsobi site
8
sda
7
probe
5
real-time
4

Similar Publications

Dynamic control of DNA circuit functionality is essential for constructing chemical reaction networks (CRNs) that implement complex functions. The triplex has been utilized for dynamically regulating the diverse functionalities of DNA circuits due to its distinctive pH responsiveness. However, it is challenging for triplexes to independently regulate the functionality of DNA circuits, as various triplexes were often required for DNA circuits to function in complex environments, which adds complexity to the design and control of dynamic circuits.

View Article and Find Full Text PDF

RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).

View Article and Find Full Text PDF

Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.

View Article and Find Full Text PDF

Nicking Activity of M13 Bacteriophage Protein 2.

Int J Mol Sci

January 2025

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.

Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.

View Article and Find Full Text PDF

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!