The immunoglobulin superfamily (IgSF) is an extensively diversified multigene family whose members share a common structural feature, the Ig fold. Members of the Ig/T-cell antigen receptor (TCR) subset of the IgSF mediate antigen-specific recognition in adaptive immune responses. Antigen-binding receptors belonging to this subset are present in all species of jawed vertebrates. To explore whether there are additional structurally related but otherwise distinct members of this subset, we have developed a technique termed the short-primer polymerase chain reaction (PCR) that targets structurally conserved short motifs in the Ig fold. Large-scale sequencing efforts and recent advances in information biotechnology, including "electronic PCR," provide additional computational means to implement similarly directed searches within databases. The use of these approaches has led to the discoveries of Ig/TCR homologues in a variety of phylogenetically diverse organisms, a diversified family of novel immune-type receptor genes, as well as a novel human IgSF member. The potential of random sequencing efforts and virtual screening of databases is described in the context of two novel genes in bony fish. The various methodologies that are discussed and the examples shown provide means for further investigating, and/or elucidating novel, IgSF receptors as well as components of pathways that are involved in immune responses in both traditional and nontraditional model systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002510050588 | DOI Listing |
Mil Med Res
January 2025
Department of Endocrinology, the Second Affiliated Hospital of Naval Medical University, Shanghai, 20003, China.
Commun Biol
January 2025
Large Molecules Research, Sanofi, Cambridge, MA, USA.
Antibodies, essential components of adaptive immunity, derive their remarkable diversity primarily from V(D)J gene rearrangements, particularly within the heavy chain complementarity-determining region 3 (CDR-H3) where D genes play a major role. Traditionally, D genes were thought to recombine only in the forward direction, despite having identical recombination signal sequences (12 base pair spacers) at both ends. This observation led us to question whether these symmetrical sequences might enable bidirectional recombination.
View Article and Find Full Text PDFSci Rep
January 2025
Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.
View Article and Find Full Text PDFTrends Immunol
January 2025
Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA. Electronic address:
Lim and colleagues demonstrate that synNotch transcriptional circuits engineered into T cells can be used to precisely control location-specific expression of payloads responding to antigen triggers, thus locally inhibiting unwanted immunity or neuroinflammation. With no off-tumor toxicity or systemic immunosuppression upon elimination of mouse brain tumors, this approach can achieve better efficacy than anticipated.
View Article and Find Full Text PDFJ Control Release
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:
Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!