As cochlear implants have become increasingly successful in the rehabilitation of adults with profound hearing impairment, the number of pediatric implant subjects has increased. We have developed an animal model of congenital deafness and investigated the effect of electrical stimulus frequency on the temporal resolution of central neurons in the developing auditory system of deaf cats. Maximum following frequencies (Fmax) and response latencies of isolated single neurons to intracochlear electrical pulse trains (charge balanced, constant current biphasic pulses) were recorded in the contralateral inferior colliculus (IC) of two groups of neonatally deafened, barbiturate-anesthetized cats: animals chronically stimulated with low-frequency signals (< or = 80 Hz) and animals receiving chronic high-frequency stimulation (> or = 300 pps). The results were compared with data from unstimulated, acutely deafened and implanted adult cats with previously normal hearing (controls). Characteristic differences were seen between the temporal response properties of neurons in the external nucleus (ICX; approximately 16% of the recordings) and neurons in the central nucleus (ICC; approximately 81% of all recordings) of the IC: 1) in all three experimental groups, neurons in the ICX had significantly lower Fmax and longer response latencies than those in the ICC. 2) Chronic electrical stimulation in neonatally deafened cats altered the temporal resolution of neurons exclusively in the ICC but not in the ICX. The magnitude of this effect was dependent on the frequency of the chronic stimulation. Specifically, low-frequency signals (30 pps, 80 pps) maintained the temporal resolution of ICC neurons, whereas higher-frequency stimuli significantly improved temporal resolution of ICC neurons (i.e., higher Fmax and shorter response latencies) compared with neurons in control cats. Furthermore, Fmax and latencies to electrical stimuli were not correlated with the tonotopic gradient of the ICC, and changes in temporal resolution following chronic electrical stimulation occurred uniformly throughout the entire ICC. In all three experimental groups, increasing Fmax was correlated with shorter response latencies. The results indicate that the temporal features of the chronically applied electrical signals critically influence temporal processing of neurons in the cochleotopically organized ICC. We suggest that such plastic changes in temporal processing of central auditory neurons may contribute to the intersubject variability and gradual improvements in speech recognition performance observed in clinical studies of deaf children using cochlear implants.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1999.82.6.2883DOI Listing

Publication Analysis

Top Keywords

temporal resolution
24
response latencies
16
electrical stimulation
12
neurons
12
temporal
11
resolution neurons
8
inferior colliculus
8
cochlear implants
8
neonatally deafened
8
low-frequency signals
8

Similar Publications

Spatiotemporal distribution of marine aerosols and gaseous species over the North Pacific Ocean.

Sci Total Environ

January 2025

Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; Research Center for Strategic Solutions for Environmental Blindspots in the Interest of Society, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea. Electronic address:

Observational studies of marine aerosols are essential for understanding the global aerosol budget and its environmental impacts. This study presents simultaneous in-situ measurements of major ionic components (Cl, NO, SO, NH, K, Ca, Na, and Mg) in aerosols and gaseous species (HCl, HNO, HONO, SO, and NH) over the North Pacific Ocean from July 4 to 15 and September 19 to October 3, 2022. Using high temporal resolution instruments aboard the Republic of Korea's icebreaker research vessel Araon, this study aimed to (1) report the spatial and temporal distributions of aerosols and gaseous species, (2) estimate the source contributions of continental anthropogenic pollutants, and (3) assess the influence of aerosol chemical composition and gaseous species on aerosol acidity and water content.

View Article and Find Full Text PDF

Background: Air pollution is a major public health threat globally. Health studies, regulatory actions, and policy evaluations typically rely on air pollutant concentrations from single exposure models, assuming accurate estimations and ignoring related uncertainty. We developed a modeling framework, bneR, to apply the Bayesian Nonparametric Ensemble (BNE) prediction model that combines existing exposure models as inputs to provide air pollution estimates and their spatio-temporal uncertainty.

View Article and Find Full Text PDF

Electroencephalographic signals are obtained by amplifying and recording the brain's spontaneous biological potential using electrodes positioned on the scalp. While proven to help find changes in brain activity with a high temporal resolution, such signals are contaminated by non-stationary and frequent artefacts. A plethora of noise reduction techniques have been developed, achieving remarkable performance.

View Article and Find Full Text PDF

Background: Ductal carcinoma in situ (DCIS) is overtreated, in part because of inability to predict which DCIS cases diagnosed at core needle biopsy (CNB) will be upstaged at excision. This study aimed to determine whether quantitative magnetic resonance imaging (MRI) features can identify DCIS at risk of upstaging to invasive cancer.

Methods: This prospective observational clinical trial analyzed women with a diagnosis of DCIS on CNB.

View Article and Find Full Text PDF

Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!