Background: Transforming growth factors-beta (TGF-betas) regulate mammary epithelial cell division. Loss of expression of TGF-beta receptor II (TGF-beta-RII) is related to cell proliferation and tumor progression. Breast epithelial hyperplastic lesions lacking atypia (EHLA) are associated with a mild elevation in breast cancer risk. We investigated the expression of TGF-beta-RII in EHLA and the risk of subsequent invasive breast cancer.

Methods: We conducted a nested case-control study of women with biopsy-confirmed EHLA who did not have a history of breast cancer or atypical hyperplasia of the breast. Case patients (n = 54) who subsequently developed invasive breast cancer were matched with control patients (n = 115) who did not. Formalin-fixed, paraffin-embedded sections of breast biopsy specimens of all 169 patients with EHLA were studied by immunohistochemical analysis with antibodies against TGF-beta-RII. All P values are two-sided.

Results: Women with breast EHLA and 25%-75% TGF-beta-RII-positive cells or less than 25% TGF-beta-RII-positive cells had odds ratios of invasive breast cancer of 1.98 (95% confidence interval [CI] = 0.95-4.1) or 3.41 (95% CI = 1.2-10.0), respectively (P for trend =.008). These risks are calculated with respect to women with EHLA that had greater than 75% TGF-beta-RII expression. Women with a heterogeneous pattern of TGF-beta-RII expression in their normal breast lobular units and either greater than 75%, 25%-75%, or less than 25% positive cells in their EHLA had odds ratios for breast cancer risk of 0.742 (95% CI = 0.3-1.8), 2.85 (95% CI = 1.1-7.1), or 3.55 (95% CI = 1.0-10.0), respectively (P for trend =.003). These risks are relative to women with a homogeneous pattern of expression in their normal lobular units and greater than 75% positive cells in their EHLA.

Conclusion: This study indicates that loss of TGF-beta-RII expression in epithelial cells of EHLA is associated with increased risk of invasive breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/91.24.2096DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
invasive breast
16
breast
13
cancer risk
12
greater 75%
12
tgf-beta-rii expression
12
transforming growth
8
mammary epithelial
8
ehla
8
ehla associated
8

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) plays an important role in the regulation of cell proliferation and migration [1]. It forms a homodimer or heterodimer with other ErbB receptor family members to activate downstream signaling. Emerging evidence indicates that the EGFR activity and downstream signaling are regulated by other proteins except its family members during tumorigenesis.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Background: We aimed to investigate the clinical and molecular characteristics of different degrees of human epidermal growth factor receptor 2 (HER2) protein expression in HER2-negative breast cancer and the related factors affecting the efficacy of neoadjuvant chemotherapy in HER2-low breast cancer patients.

Methods: The study endpoint was pathological complete remission (PCR). Blood specimens and fresh cancer tissue samples were collected before neoadjuvant chemotherapy for whole-exon sequencing (WES) and RNA sequencing (RNA-seq), and patients were divided into a human epidermal growth factor receptor 2 (HER2)-low group and a HER2-0 group according to their HER2 expression status via bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to evaluate the efficacy of pyrotinib, an orally administered small molecule tyrosine kinase inhibitor, combined with neoadjuvant chemotherapy in treating patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Pyrotinib works by inhibiting the HER2 signaling pathway, thereby preventing tumor cell growth. This single-arm clinical trial aimed to assess the total pathological complete response (tpCR; ypT0/is and ypN0) rate as the primary endpoint.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!