Insertional mutagenesis of AAV2 capsid and the production of recombinant virus.

Virology

The Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

Published: December 1999

The structural genes of adeno-associated virus serotype 2 (AAV2) have been altered by linker insertional mutagenesis in order to define critical components of virion assembly and infectivity. An in-frame restriction site linker was inserted across the capsid coding domain of a recombinant plasmid. After complementation in vivo, recombinant AAV2 viruses were generated and assayed for capsid production, packaging, transduction, heparin agarose binding, and morphology. Three classes of capsid mutants where identified. Class I mutants expressed structural proteins but were defective in virion assembly. Class II mutants generated intact virions that protected the viral genome from DNase, but failed to infect target cells. The majority of these mutants bound the heparin affinity matrix, suggesting that attachment to the AAV primary receptor was not rate limiting. One class II mutant, H2634, assembled virions and bound heparin using only Vp3, indicating that this subunit is responsible for mediating AAV receptor attachment. Finally, class III mutants assembled virions, encapsidated DNA, and infected target cells. Infectivity of these mutants ranged from 5 to 100% of that of the wild-type, demonstrating for the first time the ability to alter capsid proteins without interfering with infectivity. These AAV virions with altered capsid subunits will provide critical templates for manipulating AAV vectors for cell-specific gene delivery in vivo. In summary, the AAV capsid variants described here will facilitate further study of virus assembly, entry, and infection, as well as advance the development of this versatile vector system.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.1999.0045DOI Listing

Publication Analysis

Top Keywords

insertional mutagenesis
8
capsid production
8
virion assembly
8
class mutants
8
target cells
8
bound heparin
8
assembled virions
8
capsid
7
mutants
6
aav
5

Similar Publications

The extent of functional sequences within the human genome is a pivotal yet debated topic in biology. Although high-throughput reverse genetic screens have made strides in exploring this, they often limit their scope to known genomic elements and may introduce non-specific effects. This underscores the urgent need for novel functional genomics tools that enable a deeper, unbiased understanding of genome functionality.

View Article and Find Full Text PDF

A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance.

Dev Cell

January 2025

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Long-term risks of gene therapy are not fully understood. In this study, we evaluated safety outcomes in 783 patients over more than 2,200 total patient-years of observation from 38 T cell therapy trials. The trials employed integrating gammaretroviral or lentiviral vectors to deliver engineered receptors to target HIV-1 infection or cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!