Muscle-specific up-regulation of rat UCP3 mRNA expression by long-term hindlimb unloading.

Biochem Biophys Res Commun

Cellulaires et Moléculaires, UMR 5578 CNRS-Université Cl. Bernard Lyon I, 43 Boulevard du 11 Novembre 1918, Villeurbanne, F-69622, France.

Published: December 1999

The effect of long-term hindlimb unloading (2 or 5 week) on the expression of uncoupling protein-3 (UCP3) gene was investigated in rat skeletal muscles. The interaction of hindlimb unloading and thyroid status was also investigated at 2 weeks. Whatever the duration, mechanical unloading induced a similar increase in UCP3 mRNA relative abundance in the slow-twitch soleus (SOL) muscle (+80%, P < 0.05), whereas no effect was observed in the fast-twitch extensor digitorum longus (EDL) muscle. Hypothyroidism down-regulated while hyperthyroidism up-regulated UCP3 mRNA relative abundance in both SOL and EDL muscles, but thyroid status did not prevent the up-regulation of UCP3 induced by 2 weeks of suspension. These data therefore indicate for the first time that long-term hindlimb unloading up-regulates muscle UCP3 gene expression in a muscle-specific manner which is independent of thyroid status.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1999.1847DOI Listing

Publication Analysis

Top Keywords

hindlimb unloading
16
ucp3 mrna
12
long-term hindlimb
12
thyroid status
12
ucp3 gene
8
mrna relative
8
relative abundance
8
ucp3
6
unloading
5
muscle-specific up-regulation
4

Similar Publications

Background: Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice.

View Article and Find Full Text PDF

Chronic neuromuscular inactivity induces capillary regression within skeletal muscle. The objective of this study was to investigate the potential effects of dietary nucleic acids in counteracting the capillary reduction linked to chronic neuromuscular inactivity in the soleus muscle. The study utilized four distinct groups of female Wistar rats: a control group (CON), a hindlimb-unloading group (HU), an HU group supplemented with DNA (HU + DNA), and an HU group supplemented with RNA (HU + RNA).

View Article and Find Full Text PDF

Background: Loss of muscle mass and strength in patients who have experienced severe burns is dramatic and associated with subsequent functional impairment. Past work has shown that exercise and oxandrolone, an anabolic steroid, individually improve muscle function and muscle mass in severely burned patients. This study aims to evaluate the effect of oxandrolone treatment combined with resistance exercise on muscle atrophy and investigate the protein synthesis and mitochondrial biogenesis pathways in a hindlimb suspension model.

View Article and Find Full Text PDF

Background/aim: Lactate is a physiologically active substance secreted by skeletal muscle that has been suggested to stimulate muscle mass gain. However, the molecular mechanism for lactate-associated muscle hypertrophy remains unclear. The purpose of the present study was to investigate whether oral administration of lactate increases muscle mass under different loading conditions.

View Article and Find Full Text PDF

Prenatal Exposure to Quercetin Protects Against Methimazole-Induced Reflexive Motor Behavior and Oxidative Stress Markers in Mouse Offspring.

Int J Dev Neurosci

February 2025

Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Quercetin is a natural flavonoid and one of the most powerful antioxidants. Due to its wide range of biological properties, it may improve cognitive and physical performance by affecting nervous tissue. The current study is aimed at determining the effect of prenatal exposure to quercetin against methimazole (MMI)-induced hypothyroidism on reflexive motor behavior in mouse offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!