A subline of mesoderm-derived mouse NIH3T3 fibroblasts was selected for its ability to proliferate in serum-free media. This cell line (SFDH) grows as a monolayer at low density and spontaneously forms dense, multicellular spheroids at high density. Spheroid formation can also be induced by the addition of dexamethasone, polybrene, or heparin. Spheroids eventually detach from the substrate, but will reattach and re-form monolayers when transferred to fresh culture vessels and media, repeating the cycle again upon reaching high density. Thin section analysis of spheroids shows morphologically-distinct regions of cells, including an attenuated outer surface and a cuboidal interior with occasional lumen-like areas. Over time in culture, spheroids express increasing levels of met, the Met ligand-SF/HGF and cytokeratin, an epithelial marker, in comparison to monolayers. Both monolayer and spheroid-derived cells are rapidly tumorigenic in nude mice. Media conditioned by SFDH cells contain factors that stimulate growth and attachment of a variety of tumorigenic and non-tumorigenic cell lines, inducing cells to divide in serum-free media for up to 14 days when plated on tissue culture-treated and nontreated plastic surfaces pre-coated with SFDH conditional media. The growth-stimulating activity fractionates as a single peak over a sepharose column in the presence of 6 m urea, and sediments as a high molecular weight complex. Growth-stimulating activity can be neutralized by several antisera specific for hepatocyte growth factor, and the same sera recognize a novel approximately 37 kD protein in active supernatants. The cyclic, continuous nature of alternating monolayer and spheroid forms makes this cell line appropriate for studying changing gene expression patterns in progressive cell-cell/cell-matrix interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1006/cbir.1999.0346DOI Listing

Publication Analysis

Top Keywords

monolayer spheroid
8
spheroid forms
8
serum-free media
8
high density
8
growth-stimulating activity
8
media
5
mouse fibroblast
4
fibroblast cycles
4
monolayer
4
cycles monolayer
4

Similar Publications

The importance of preclinical models for cholangiocarcinoma drug discovery.

Expert Opin Drug Discov

January 2025

Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.

Introduction: Biliary tract cancer (BTC) comprises a clinically diverse and genetically heterogeneous group of tumors along the intra- and extrahepatic biliary system (intrahepatic and extrahepatic cholangiocarcinoma) and gallbladder cancer with the common feature of a poor prognosis, despite increasing molecular knowledge of associated genetic aberrations and possible targeted therapies. Therefore, the search for even more precise and individualized therapies is ongoing and preclinical tumor models are central to the development of such new approaches.

Areas Covered: The models described in the current review include simple and advanced in vitro and in vivo models, including cell lines, 2D monolayer, spheroid and organoid cultures, 3D bioprinting, patient-derived xenografts, and more recently, machine-perfusion platform-based models of resected liver specimens.

View Article and Find Full Text PDF

One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis.

View Article and Find Full Text PDF

A thermoplastic chip for 2D and 3D correlative assays combining screening and high-resolution imaging of immune cell responses.

Cell Rep Methods

January 2025

Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Medicine, Center for Infectious Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden. Electronic address:

We present an easy-to-use, disposable, thermoplastic microwell chip designed to support screening and high-resolution imaging of single-cell behavior in two- and three-dimensional (2D and 3D) cell cultures. We show that the chip has excellent optical properties and provide simple protocols for efficient long-term cell culture of suspension and adherent cells, the latter grown either as monolayers or as hundreds of single, uniformly sized spheroids. We then demonstrate the applicability of the system for single-cell analysis by correlating the dynamic cytotoxic response of single immune cells grown under different metabolic conditions to their intracellular cytolytic load at the end of the assay.

View Article and Find Full Text PDF

Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.

View Article and Find Full Text PDF

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a synthetic additive widely used in the rubber industry, and its oxidized product 6PPD-quinone (6PPDQ), have garnered widespread attention as an emerging hazardous chemicals owing to their potential detrimental effects on aquatic ecosystem and human health. The effects of 6PPD and 6PPDq on the female reproductive tract, especially embryo implantation, remain unknown and were investigated in this study. We used the spheroid attachment and outgrowth models of BeWo trophoblastic spheroids and Ishikawa cells as surrogates for the human blastocyst and endometrial epithelium, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!