Metabolic adaptations to a high-fat diet in endurance cyclists.

Metabolism

Medical Research Council/University of Capetown Bioenergetics of Exercise Research Unit, University of Cape Town Medical School, Newlands, South Africa.

Published: December 1999

We examined the time course of metabolic adaptations to 15 days of a high-fat diet (HFD). Sixteen endurance-trained cyclists were assigned randomly to a control (CON) group, who consumed their habitual diet (30% +/- 8% mJ fat), or a HFD group, who consumed a high-fat isocaloric diet (69% +/- 1% mJ fat). At 5-day intervals, the subjects underwent an oral glucose tolerance test (OGTT); on the next day, they performed a 2.5-hour constant-load ride at 70% peak oxygen consumption (VO2peak), followed by a simulated 40-km cycling time-trial while ingesting a 10% 14C-glucose + 3.44% medium-chain triglyceride (MCT) emulsion at a rate of 600 mL/h. In the OGTT, plasma glucose concentrations at 30 minutes increased significantly after 5 days of the HFD and remained elevated at days 10 and 15 versus the levels measured prior to the HFD (P < .05). The activity of carnitine acyltransferase (CAT) in biopsies of the vastus lateralis muscle also increased from 0.45 to 0.54 micromol/g/min over days 0 to 10 of the HFD (P < .01) without any change in citrate synthase (CS) or 3-hydroxyacyl-coenzyme A dehydrogenase (3-HAD) activities. Changes in glucose tolerance and CAT activity were associated with a shift from carbohydrate (CHO) to fat oxidation during exercise (P < .001), which occurred within 5 to 10 days of the HFD. During the constant-load ride, the calculated oxidation of muscle glycogen was reduced from 1.5 to 1.0 g/min (P < .001) after 15 days of the HFD. Ingestion of a HFD for as little as 5 to 10 days significantly altered substrate utilization during submaximal exercise but did not attenuate the 40-km time-trial performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0026-0495(99)90238-xDOI Listing

Publication Analysis

Top Keywords

days hfd
16
metabolic adaptations
8
high-fat diet
8
hfd
8
group consumed
8
+/- fat
8
glucose tolerance
8
constant-load ride
8
days
7
adaptations high-fat
4

Similar Publications

High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.

View Article and Find Full Text PDF

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Objectives: Nonalcoholic fatty liver disease (NAFLD) is known to disrupt testicular anti-oxidant capacity, leading to oxidative stress (OS) that can negatively affect male fertility by damaging sperm DNA. Heat shock proteins (HSP70 and HSP90), in association with transitional proteins (TP1 and TP2), play crucial roles in protecting sperm DNA integrity in oxidative conditions. Whiteleg shrimp protein hydrolysates (HPs) exhibit anti-oxidant properties, prompting this study to explore the potential of HPs in ameliorating NAFLD-induced testicular damage.

View Article and Find Full Text PDF

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

ICAM1 blockade improves ischemic muscle reperfusion in diabetic mice.

Cardiovasc Diabetol

January 2025

Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, U1034, CHU de Bordeaux, 1, Avenue de Magellan, Entrée par l'Hôpital Haut-Lévêque, 33604, Pessac, France.

Background: Chronic Limb-Threatening Ischemia (CLTI) represents the most advanced stage of Peripheral Artery Disease (PAD) and is associated with dire prognosis, characterized by a substantial risk of limb amputation and diminished life expectancy. Despite significant advancements in therapeutic interventions, the underlying mechanisms precipitating the progression of PAD to CLTI remain elusive.

Methods: Considering diabetes is one of the main risk factors contributing to PAD exacerbation into CLTI, we compared hind limb ischemia recovery in HFD STZ vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!