Lhx3 is a LIM homeodomain transcription factor essential for pituitary development and motor neuron specification in mice. We identified two isoforms of human Lhx3, hLhx3a and hLhx3b, which differ in their ability to trans-activate pituitary gene targets. These factors are identical within the LIM domains and the homeodomain, but differ in their amino-terminal sequences preceding the LIM motifs. Both isoforms are localized to the nucleus and are expressed in the adult human pituitary, but gene activation studies demonstrate characteristic functional differences. Human Lhx3a trans-activated the alpha-glycoprotein subunit promoter and a reporter construct containing a high-affinity Lhx3 binding site more effectively than the hLhx3b isoform. In addition, hLhx3a synergized with the pituitary POU domain factor, Pit-1, to strongly induce transcription of the TSHbeta-subunit gene, while hLhx3b did not. We demonstrate that the differences in gene activation properties between hLhx3a and hLhx3b correlate with their DNA binding to sites within these genes. The short hLhx3b-specific amino-terminal domain inhibits DNA binding and gene activation functions of the molecule. These data suggest that isoforms of Lhx3 may play distinct roles during development of the mammalian pituitary gland and other neuroendocrine systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/mend.13.12.0395 | DOI Listing |
PLoS One
January 2025
Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochemical (IHC) staining of particular proteins is highly beneficial, as it could reduce the burden on pathologists. Interestingly, there have been no prior studies that have examined G3BP1 IHC staining using digital pathology.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFChem Biodivers
January 2025
SRM Institute of Science and Technology - NCR Campus, chemistry, Department of Chemistry, SRM Institute of Science and Technology, Delhi NCR Camp, India, 241405, Modinagar, INDIA.
This review paper provides an inclusive overview of the intricate interactions amid ionic liquids (ILs) and essential biomacromolecules, mainly Hemoglobin (Hb), Bovine Serum Albumin (BSA), Human Serum Albumin (HSA), and Calf Thymus-DNA (CT-DNA). ILs have recently become a topic of great attention because of their inimitable physicochemical properties and potential uses in different fields. The review systematically explores the binding mechanisms, thermodynamics, and structural changes induced by ILs on Hb, BSA, HSA, and CT-DNA using spectroscopic, thermodynamic, and computational techniques.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India.
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite , six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!