The novel multitargeted antifolate, MTA (N-[4[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-ethy l]-benzoyl]-L-glutamic acid; LY23 1514) inhibits thymidylate synthase, dihydrofolate reductase, and glycinamide ribonucleotide formyltransferase. The resultant inhibition of the de novo thymidylate and purine biosynthesis can be circumvented by salvage of extracellular thymidine and hypoxanthine. The first step in the salvage pathway is the transport of nucleosides and bases across the cell membrane. Dipyridamole inhibits nucleoside transport and in vitro studies have demonstrated that dipyridamole can prevent thymidine salvage rescue from antifolate thymidylate synthase inhibitors. More recently, dipyridamole also has been shown to prevent hypoxanthine rescue from antipurine antifolates in some cell lines but not others. The effects of dipyridamole on MTA growth inhibition and end product reversal by thymidine and hypoxanthine was investigated in two lung cancer cell lines with (A549) and without (COR L23) dipyridamole-sensitive hypoxanthine rescue. The IC50 values for MTA-induced growth inhibition were 28 and 640 nmol/L for COR L23 and A549 cells, respectively. End product reversal studies show that thymidine can completely reverse growth inhibition by IC50 concentration of MTA but only partially rescue cells from 10 times the IC50 concentration of MTA. The combination of thymidine and hypoxanthine was required for complete reversal from MTA at 10 times the IC50 concentration. Dipyridamole blocked the partial rescue from MTA-induced growth inhibition by thymidine alone as well as the complete rescue by thymidine plus hypoxanthine not only in A549 cells, which have dipyridamole-sensitive hypoxanthine transport, but also in COR L23 cells, in which hypoxanthine uptake is insensitive to dipyridamole. These studies demonstrate that nucleoside and base salvage can compromise the activity of MTA in human tumor cell lines, but that dipyridamole can readily prevent salvage and restore growth inhibition.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.
The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China.
CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
December 2024
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Patients with recurrent high-grade glioma (rHGG) have a poor prognosis with median progression-free survival (PFS) of <7 months. Responses to treatment are heterogenous, suggesting a clinical need for prognostic models. Bayesian data analysis can exploit individual patient follow-up imaging studies to adaptively predict the risk of progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!