The mechanism of action of an antifolate may be investigated using a variety of experimental methods. These include experiments in a cell culture setting to observe possible protection against drug effects afforded by the end products of metabolic pathways, assessing the activity of purified target enzymes in the presence of the antifolate, and, finally, the measurement of drug effects on intracellular folate and nucleoside triphosphate pools. The current discussion is focused on studies using CCRF-CEM leukemia cells that were designed to compare and contrast mechanisms of action of the antifolates methotrexate, which is primarily a dihydrofolate reductase inhibitor, raltitrexed, a thymidylate synthase inhibitor, LY309887, a glycinamide ribonucleotide formyltransferase inhibitor, and MTA (multitargeted antifolate), which is a novel antifolate antimetabolite. The results of these studies support the hypothesis that MTA affects multiple enzymatic targets and has a distinct mechanism of action from methotrexate, raltitrexed, and LY309887.

Download full-text PDF

Source

Publication Analysis

Top Keywords

intracellular folate
8
folate nucleoside
8
nucleoside triphosphate
8
triphosphate pools
8
mechanism action
8
drug effects
8
cellular pharmacology
4
pharmacology mta
4
mta correlation
4
correlation mta-induced
4

Similar Publications

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy.

View Article and Find Full Text PDF

Folic Acid-Modified Milk Exosomes Delivering c-Kit siRNA Overcome EGFR-TKIs Resistance in Lung Cancer by Suppressing mTOR Signaling and Stemness.

Int J Biol Sci

January 2025

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041.

Article Synopsis
  • The study addresses a common issue in lung cancer treatment, where patients develop resistance to EGFR-TKIs like gefitinib, leading to worse outcomes.
  • The researchers developed a novel therapy using folic acid-modified milk exosomes loaded with c-kit siRNA (FA-mExo-siRNA-c-kit) to counteract this resistance by targeting the c-kit gene, which is linked to stemness traits in cancer cells.
  • Results showed that this approach not only reduced c-kit expression and stemness characteristics but also slowed tumor growth and improved survival in experimental models, highlighting its potential as a new treatment strategy for resistant lung cancer.
View Article and Find Full Text PDF

The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!