The aim of this in vitro study was to investigate the measuring range and accuracy of a miniaturized equipment for respiratory impedance (Zrs) measurements in newborns using jet-pulses. Brief flow pulses (peak flow=16 L x min(-1), width=10 ms) were generated by a jet-generator consisting of a solenoid valve and an injector, situated between pneumotachograph and outflow resistance. Serially arranged resistance-inertance-compliance (R-I-C) lung models (RM=1.3-6.4 kPa x L(-1) x s, CM=7.4-36.9 mL x kPa(-1), IM=1.5 Pa x L(-1) x s2) were used to measure the real and imaginary part of Zrs between 4 and 50 Hz and to determine R, C and I by means of the method of least squares. The median errors for R, C and I were -0.1 kPa x L(-1) x s (-2%), 2.4 mL x kPa(-1)(13%) and -0.2 Pa x L(-1) x s2 (-13%) for measurements without breathing signals and 0.11 kPa x L(-1) -s (3%), 3 mL x kPa(-1) (16%) and 0.28 Pa x L (-1) x s2 (19%) in mechanically ventilated models. During spontaneous breathing the influence of the breathing flow on Zrs was negligible. The equipment did not show any nonlinearity when different pulse amplitudes were used (Vmax=13-22 L x min(-1)). The investigations have shown that jet-pulses allow reliable measurements of respiratory impedance and have the potential to provide valuable information about lung mechanics in spontaneously breathing and mechanically ventilated newborns. The developed measuring head has a low apparatus dead space, is easy to disinfect, has standard connections and can be used as the T-piece in a ventilator circuit.

Download full-text PDF

Source
http://dx.doi.org/10.1183/09031936.99.14511569DOI Listing

Publication Analysis

Top Keywords

respiratory impedance
12
kpa l-1
12
investigations jet-pulses
8
mechanically ventilated
8
l-1
5
vitro investigations
4
jet-pulses measurement
4
measurement respiratory
4
impedance newborns
4
newborns aim
4

Similar Publications

Effect of Individualized PEEP Titrated by EIT in Patients with Acute Respiratory Distress Syndrome.

Am J Respir Crit Care Med

January 2025

Zhongda Hospital, School of Medicine, Southeast University, 210009, Department of Critical Care Medicine, Nanjing, Jiangsu, China;

View Article and Find Full Text PDF

[Effect of extra corporeal reducing pre-load on pulmonary mechanical power in patients with acute respiratory distress syndrome].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Public Utilities Development, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.

Objective: To explore the effects of veno-venous extra corporeal carbon dioxide removal (V-V ECCOR) on local mechanical power and gas distribution in the lungs of patients with mild to moderate acute respiratory distress syndrome (ARDS) receiving non-invasive ventilation.

Methods: Retrospective research methods were conducted. Sixty patients with mild to moderate ARDS complicated with renal insufficiency who were transferred to the respiratory intensive care unit (RICU) through the 96195 platform critical care transport green channel from January 2018 to January 2020 at the collaborative hospitals of Henan Provincial People's Hospital were enrolled.

View Article and Find Full Text PDF

Background/aim: Chronic obstructive pulmonary disease (COPD) is often complicated by sarcopenia, a condition of reduced muscle mass and function that adversely affects quality of life, lung function, and exacerbation rates. Ultrasonography could be an effective tool for detecting sarcopenia, notably by assessing diaphragmatic function, which may indicate muscle health in COPD patients. This study aims to evaluate the effectiveness of diaphragmatic ultrasound in detecting sarcopenia among COPD patients.

View Article and Find Full Text PDF

Comparison of treatments for equine laryngeal hemiplegia using computational fluid dynamic analysis in an equine head model.

Front Vet Sci

December 2024

Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.

Introduction: Computational fluid dynamics (CFD) is gaining momentum as a useful mechanism for analyzing obstructive disorders and surgeries in humans and warrants further development for application in equine surgery. While advancements in procedures continue, much remains unknown about the specific impact that different surgeries have on obstructive airway disorders. The objective of this study was to apply CFD analysis to an equine head inhalation model replicating recurrent laryngeal neuropathy (RLN) and four surgical procedures.

View Article and Find Full Text PDF

Positive end-expiratory pressure (PEEP) titration is crucial for improving oxygenation and preventing ventilator-induced lung injury in acute hypoxemic respiratory failure. Electrical impedance tomography (EIT) offers real-time, bedside monitoring of lung ventilation distribution, potentially guiding individualized PEEP settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!