Four different classes of mammalian mitochondrial ribosomal proteins were identified and characterized. Mature proteins were purified from bovine liver and subjected to N-terminal or matrix-assisted laser-desorption mass spectroscopic amino acid sequencing after tryptic in-gel digestion and high pressure liquid chromatography separation of the resulting peptides. Peptide sequences obtained were used to virtually screen expressed sequence tag data bases from human, mouse, and rat. Consensus cDNAs were assembled in silico from various expressed sequence tag sequences identified. Deduced mammalian protein sequences were characterized and compared with ribosomal protein sequences of Escherichia coli and yeast mitochondria. Significant sequence similarities to ribosomal proteins of other sources were detected for three out of four different mammalian protein classes determined. However, the sequence conservation between mitochondrial ribosomal proteins of mammalian and yeast origin is much less than the sequence conservation between cytoplasmic ribosomal proteins of the same species. In particular, this is shown for the mammalian counterparts of the E. coli EcoL2 ribosomal protein (MRP-L14), that do not conserve the specific and functional highly important His(229) residue of E. coli and the corresponding yeast mitochondrial Rml2p.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.51.36043 | DOI Listing |
J Cell Biol
February 2025
Department of Biochemistry, University of Colorado, Boulder, CO, USA.
Cajal bodies are essential sites for the biogenesis of small nuclear and nucleolar ribonucleoproteins. In this issue, Courvan and Parker discuss new work from Neugebauer and colleagues (https://doi.org/10.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami Miller School of Medicine, Center for Therapeutic Innovation, Miami, FL, USA.
Background: Rapamycin is currently in clinical trials for AD, yet numerous studies have suggested that rapamycin inhibits mTORC2 as well as mTORC1, which could be detrimental for AD pathology. Brain insulin resistance is a known aspect of AD pathology and mTORC2 inhibition reduces AKT phosphorylation, which is a main mediator of cellular insulin signaling, perpetuating insulin resistance and further worsening brain glucose metabolism. Here, we show that rapamycin prevents insulin-induced AKT phosphorylation in human neurons and explore the differential effects of mTORC1 and mTORC2 on neuronal insulin sensitivity.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins.
View Article and Find Full Text PDFRibosome biogenesis is pivotal in the self-replication of life. In Escherichia coli, three ribosomal RNAs and 54 ribosomal proteins are synthesized and subjected to cooperative hierarchical assembly facilitated by numerous accessory factors. Realizing ribosome biogenesis in vitro is a critical milestone for understanding the self-replication of life and creating artificial cells.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
The ability to determine the essentiality of a gene in the protozoan parasite Leishmania is important to identify potential targets for intervention and understanding the parasite biology. CRISPR gene editing technology has significantly improved gene targeting efficiency in Leishmania. There are two commonly used CRISPR gene targeting methods in Leishmania; the stable expression of the gRNA and Cas9 using a plasmid containing a Leishmania ribosomal RNA gene promoter (rRNA-P stable protocol) and the T7 RNA polymerase based transient gRNA expression system in promastigotes stably expressing Cas9 (T7 transient protocol).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!