Transplacentally initiated schwannomas in mice and rats arise preferentially in the Gasserian ganglion of the trigeminal nerve and spinal root ganglia, while those of the Syrian golden hamster most commonly occur subcutaneously. Rat and hamster schwannomas almost invariably contain a mutationally activated neu oncogene. In rat schwannomas, the mutant allele predominates, while the relative abundance of mutant alleles is very low in hamster nerve tumors. We investigated whether neu is mutated in mouse schwannomas and whether the pattern and allelic ratio of the mutation resemble those for the hamster or the rat. Pregnant C3H/HeNCr mice received 0.4 micromol N-nitrosoethylurea/g body weight on day 19 of gestation. Ten trigeminal and one peripheral nerve schwannomas developed in 11 of the 201 offspring. Missense T --> A transversion mutations were detected in the neu transmembrane domain in eight of ten schwannomas analyzed, as determined by MnlI digestion of polymerase chain reaction products. The mutant allele was predominantly detected in two tumors and was abundant in six others. Transfection of eight out of ten mouse tumor DNAs into hamster cells yielded transformed foci; seven out of eight contained mutant mouse neu. Mouse schwannomas closely resembled those of rats both in the preferred anatomical site and in the mutant/wild-type neu allele ratios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004320050330 | DOI Listing |
Pharmacol Res
January 2025
Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China. Electronic address:
Gastric cancer remains a significant global health burden, characterized by regional variations in incidence and poor survival prospects in advanced stages. Natural killer (NK) cells play a crucial role in the body's anti-cancer defense, and chimeric antigen receptor (CAR)-NK cell therapy is gaining attention as a cutting-edge and promising treatment method. This study aims to tackle the challenge of TGF-β-mediated tumor immune evasion within the immunosuppressive tumor microenvironment by designing a novel chimeric cytokine receptor TRII/21R, which consists of extracellular domains of TGF-β receptor II (TRII) and transmembrane and intracellular domains of IL-21 receptor (21R) and can convert the immunosuppressive signal from TGF-β in the tumor microenvironment (TME) into an NK cell activation signal through the IL-21R-STAT3 pathway.
View Article and Find Full Text PDFMol Divers
January 2025
Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFNature
January 2025
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
γ-Glutamyl carboxylase (GGCX) is the sole identified enzyme that uses vitamin K (VK) as a cofactor in humans. This protein catalyses the oxidation of VK hydroquinone to convert specific glutamate residues to γ-carboxyglutamate residues in VK-dependent proteins (VDPs), which are involved in various essential biological processes and diseases. However, the working mechanism of GGCX remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, China.
Ferroptosis is a form of iron-dependent programmed cell death, which is distinct from apoptosis, necrosis, and autophagy. Mitochondria play a critical role in initiating and amplifying ferroptosis in cancer cells. Voltage-Dependent Anion Channel 1 (VDAC1) embedded in the mitochondrial outer membrane, exerts roles in regulation of ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!