Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increased free radical production and hyperinsulinemia are thought to play a role in experimental and human atherosclerosis, but the relation between the 2 abnormalities has not been studied. In 23 healthy volunteers, we measured the susceptibility of circulating low-density lipoprotein (LDL) cholesterol particles to in vitro copper sulfate oxidation (measured as the lag phase) and cell-mediated oxidative modification (measured as malondialdehyde generation in LDL during incubation with human umbilical vein endothelial cells), as well as the vitamin E content of LDL cholesterol at baseline and after 2 hours of physiological hyperinsulinemia (euglycemic insulin clamp). The lag time of LDL oxidation decreased from control values of 108+/-3 and 107+/-3 minutes (at baseline and after 2 hours of saline infusion) to 101+/-3 minutes after 2 hours of clamping (P<0.0001). At corresponding times, cell-mediated malondialdehyde generation in LDL rose from 4.96+/-0.11 and 4.98+/-0.10 to 5.28+/-0.10 nmol/L (P=0. 0006), whereas the LDL vitamin E content decreased from 6.78+/-0.06 and 6.77+/-0.06 to 6.64+/-0.06 microg/mg (P<0.04). The insulin-induced shortening of the lag phase was directly related to the decrement of vitamin E in LDL; furthermore, in subjects with higher baseline serum triglyceride levels, insulin induced a greater shortening of the lag phase than in subjects with low baseline triglycerides. We conclude that in healthy humans acute physiological hyperinsulinemia enhances the oxidative susceptibility of LDL cholesterol particles. This effect may have pathogenic significance for atherogenesis in insulin resistant states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.19.12.2928 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!