Vascular smooth muscle cell (SMC) migration is a critical step in the development of neointima after angioplasty. Matrix metalloproteinases (MMPs) degrade the basement membrane and the extracellular matrix, facilitating SMC migration. Transfer of the endothelial nitric oxide synthase (eNOS) gene to the injury site inhibits neointima formation. Neither the signaling pathways leading to NO-mediated inhibition of SMC migration and proliferation nor the alterations in these pathways have been characterized. We hypothesize that NO inhibits SMC migration in part by regulating MMP activity. To test this hypothesis, we transfected cultured rat aortic SMCs with replication-deficient adenovirus containing bovine eNOS gene and analyzed the conditioned medium for MMP activity. We observed that eNOS gene transfer significantly (P<0.05) inhibited SMC migration and significantly (P<0.05) decreased MMP-2 and MMP-9 activities in the conditioned medium. Similarly, addition of the NO donor DETA NONOate and 8-bromo-cGMP to the culture medium significantly decreased MMP-2 and MMP-9 activities in the conditioned medium collected 24 hours after treatment. Furthermore, Western blot analysis of the conditioned medium collected from eNOS gene-transfected SMCs showed a significant increase in tissue inhibitor of metalloproteinases-2 (TIMP-2) levels. Our data suggest that NO decreases MMP-2 and MMP-9 activities and increases TIMP-2 secretion, and this shifts the balance of MMP activity, which may favor the inhibition of cell migration because of inhibition of extracellular matrix degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.19.12.2871 | DOI Listing |
Wiad Lek
January 2025
EXPERT-ANALYTICAL MEDICAL CENTER FOR MOLECULAR GENETICS, SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE.
Objective: Aim: To determine the influence of maternal and neonatal variants of the eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) genes and their intergenic interactions on the development of HIE in newborns.
Patients And Methods: Materials and Methods: The study included a cohort of 105 newborns and their 99 mothers. Determination of variants of the genes eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) was carried out for the patients of study groups.
Placenta
January 2025
Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan. Electronic address:
Background: Preeclampsia (PE) is a serious condition characterized by hypertension and proteinuria after 20 weeks of gestation. The exact cause of PE is unknown but may involve abnormalities in the renin-angiotensin-aldosterone system (RAAS) and endothelial nitric oxide synthase (eNOS). Genetic variations in angiotensinogen (AGT), angiotensin-converting enzyme (ACE), and eNOS genes have been associated with PE.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.
View Article and Find Full Text PDFPhytomedicine
January 2025
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China. Electronic address:
Background: Specific treatment for rheumatoid arthritis (RA) is still an unmet need. Yu-Xue-Bi (YXB) capsule effectively treats RA with blood stasis syndrome (BS). However, its mechanism remains unclear.
View Article and Find Full Text PDFLife Sci
February 2025
Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:
Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!