Erythroid colonies could be produced without the addition of erythropeietin in plasma cultures seeded with bone marrow cells from normal C3Hf/Bi mice by exposure of the cells in vitro to medium from a cell line (IS) that continuously produces Friend leukemia virus in culture. The activity in the culture medium was viral rather than erythropoietin-like, since it was sedimentable by high-speed centrifugation and heat labile. Erythroid colonies did not develop when the bone marrow cells exposed to virus-containing medium were from mice genetically resistant to Friend virus. IS culture medium contained both Friend spleen focus-forming and XC-plaque-forming activities. No erythroid colonies were induced when genetically sensitive cells were exposed to a preparation from which the spleen focus-forming activity had been removed, but which contained XC plaque-forming activity in high concentration. Thus the spleen focus-forming component of Friend virus appeared to be responsible for inducing erythroid colony formation without erythropoietin in vitro. Some erythroid colonies were also found in control cultures to which neither virus nor erythropoietin had been added. Reduction in the concentration of fetal calf serum in the culture medium substantially decreased the number of these colonies but had only a minor effect on the number of virus-induced colonies. The number of erythroid colonies produced after 2 days of culture without erythropoietin or fetal calf serum was approximately proportional to the titer of Friend spleen focus-forming virus to whcih the bone marrow cells had been exposed. This system should prove useful for investigation in vitro of Friend virus--host cell interactions which lead to erythropoietin-independent erythropoiesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC433034 | PMC |
http://dx.doi.org/10.1073/pnas.72.9.3556 | DOI Listing |
Blood Adv
January 2025
Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
Interferon alpha (IFNa) is approved for the therapy of patients (pts) with polycythemia vera (PV), a subtype of myeloproliferative neoplasms (MPN). Some pts achieve molecular responses (MR), but clonal factors sensitizing for MR remain elusive. We integrated colony formation and differentiation assays with single-cell RNA seq and genotyping in PV-derived cells vs.
View Article and Find Full Text PDFMetabolites
January 2025
Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia.
Background/objectives: Bone marrow adipose tissue (BMAT) has been described as an important biomechanic and lipotoxic factor with negative impacts on skeletal and hematopoietic system regeneration. BMAT undergoes metabolic and cellular adaptations with age and disease, being a source of potential biomarkers. However, there is no evidence on the lipid profile and cellularity at different skeletal locations in osteoarthritis patients undergoing primary hip arthroplasty.
View Article and Find Full Text PDFJ Cancer
January 2025
The Colorectal and Anal Surgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.
PLoS One
December 2024
Department of Research and Development, Jinan Perfect Biological Technology Co., LTD, Jinan, Shandong, China.
This study aimed to find whether oral administration of calf bone marrow hydrolysate liposomes (CBMHL) can improve renal anemia. Calf bone marrow was defatted, papain hydrolyzed, liposomalized and lyophilized. Its hematopoietic ability was proved by the colony formation experiment of umbilical cord blood hematopoietic stem cells in vitro.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China.
Background: The challenge of expanding haematopoietic stem/progenitor cells (HSPCs) in vitro has limited their clinical application. Human hair follicle mesenchymal stem cells (hHFMSCs) can be reprogrammed to generate intermediate stem cells by transducing OCT4 (hHFMSCs) and pre-inducing with FLT3LG/SCF, and differentiated into erythrocytes. These intermediate cells exhibit gene expression patterns similar to pre-HSCs, making them promising for artificial haematopoiesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!