Mutations in the gene encoding the amyloid protein precursor (APP) cause autosomal dominant Alzheimer's disease. Cleavage of APP by unidentified proteases, referred to as beta- and gamma-secretases, generates the amyloid beta-peptide, the main component of the amyloid plaques found in Alzheimer's disease patients. The disease-causing mutations flank the protease cleavage sites in APP and facilitate its cleavage. Here we identify a new membrane-bound aspartyl protease (Asp2) with beta-secretase activity. The Asp2 gene is expressed widely in brain and other tissues. Decreasing the expression of Asp2 in cells reduces amyloid beta-peptide production and blocks the accumulation of the carboxy-terminal APP fragment that is created by beta-secretase cleavage. Solubilized Asp2 protein cleaves a synthetic APP peptide substrate at the beta-secretase site, and the rate of cleavage is increased tenfold by a mutation associated with early-onset Alzheimer's disease in Sweden. Thus, Asp2 is a new protein target for drugs that are designed to block the production of amyloid beta-peptide peptide and the consequent formation of amyloid plaque in Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/990107DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
20
amyloid beta-peptide
12
aspartyl protease
8
beta-secretase activity
8
asp2 protein
8
amyloid
6
alzheimer's
5
disease
5
app
5
cleavage
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!