Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFChina CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.
Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.
PNAS Nexus
January 2025
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube.
View Article and Find Full Text PDFTau exhibits change in both spatial extent and density of pathology along the Alzheimer's disease (AD) spectrum with each aspect contributing to the overall burden of pathological tau. Nevertheless, studies using Tau PET have measured either magnitude using standardized uptake value ratios (SUVRs) or extent using number of Tau+ regions. We hypothesized that combining these two dimensions into a single measure of Magnitude and eXtent, Tau-MaX, would provide improved quantification of global tau burden as well as allowing for a region-agnostic measure of global tau burden that does not require a pre-specified region of interest (ROI) or meta-ROI.
View Article and Find Full Text PDFDigit Health
January 2025
Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea.
Objective: Accurate measurement of pelvic floor muscle (PFM) strength is crucial for the management of pelvic floor disorders. However, the current methods are invasive, uncomfortable, and lack standardization. This study aimed to introduce a novel noninvasive approach for precise PFM strength quantification by leveraging extracorporeal surface perineal pressure (ESPP) measurements and machine learning algorithms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!