Background: Neuroelectrophysiological abnormalities in diabetes indicate nervous function failure. Restoration of euglycemia by islet transplantation may prevent or reverse these abnormalities.
Methods: Pancreatic islets were transplanted in inbred Lewis rats after 15 days (Ta12, primary prevention) or 8 months (Tb12, secondary prevention) from streptozotocin-induced diabetes. Transplanted and control (normal and diabetic) rats were followed for a total period of 12 months. Metabolic parameters, somato-sensory, brain-stem auditory, and visual evoked potentials were determined at the beginning and at the end of the study and before transplantation for secondary prevention.
Results: The metabolic parameters in transplanted animals were similar to those of normal animals. Ta12 and normal group somato-sensory conduction velocities did not vary and were always significantly higher than those of diabetic animals. By contrast, Tb12 group conduction velocities showed only a partial improvement, values lying between those of diabetic and normal rats. Brain-stem auditory (waves I, II, and III) latencies in Ta12 group were similar to those of normal rats and significantly lower than those of diabetic animals (wave I: P<0.01; waves II and III: P<0.05). Tb12 group wave I and II latency values remained altered (P<0.005 and P<0.01 versus normal values respectively). Visual evoked potentials-P1 wave latencies in transplanted rats were always higher than those of normal and diabetic animals.
Conclusions: After primary prevention, central and peripheral neurological alterations were abolished. After secondary prevention, transplantation beneficial effects were partial, occurring mainly at peripheral level. These results highlight the importance of early transplantation to prevent hyperglycemia-dependent neuroelectrophysiological alterations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00007890-199911270-00004 | DOI Listing |
Pharmacol Rep
January 2025
Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.
View Article and Find Full Text PDFCell Transplant
January 2025
Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
Islet transplantation (IT) is a successful natural cell therapy. But the benefits are known mostly to individuals with severe type 1 diabetes who undergo IT and the health care professionals that work to make the therapy available, reproducible, and safe. Data linking IT to overall survival in T1D might alter this situation and frame the therapy in a more positive light.
View Article and Find Full Text PDFJ Diabetes
January 2025
State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.
Pancreatic islet transplantation is a crucial treatment for managing type 1 diabetes (T1D) in clinical settings. However, the limited availability of human cadaveric islet donors and the need for ongoing administration of immunosuppressive agents post-transplantation hinder the widespread use of this treatment. Stem cell-derived islet organoids have emerged as an effective alternative to primary human islets.
View Article and Find Full Text PDFTransplantation
January 2025
Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
Nano Lett
January 2025
Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States.
In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!