PepR1, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis.

Microbiology (Reading)

Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, PO Box 3049, D-67653 Kaiserslautern, Germany1.

Published: November 1999

The PepR1 protein from Lactobacillus delbrueckii subsp. lactis DSM 7290 shares extensive homology with catabolite-control proteins from various Gram-positive bacteria. Expression of the subcloned pepR1 gene allowed for partial complementation of a ccpA defect in Staphylococcus xylosus. The influence of PepR1 on transcription of the prolidase gene pepQ, which is located adjacent to pepR1, was examined by use of lacZ reporter gene fusions in Escherichia coli. PepR1 stimulated transcription initiation at the pepQ promoter about twofold, and this effect required the integrity of a 14 bp palindromic cre-like sequence located 74 nt upstream of pepQ. In gel-mobility-shift assays, PepR1 specifically interacted with the pepQ promoter region and also with DNA fragments covering the promoters of the pepX, pepl and brnQ genes of Lb. delbrueckii subsp. lactis, which encode two additional peptidases and a branched-chain amino acid transporter, respectively. cre-like elements were identified in each of these DNA fragments. Catabolite control of PepQ was demonstrated in Lb. delbrueckii subsp. lactis. During growth with lactose the enzyme activity was twofold higher than in the presence of glucose, and corresponding differences were also detected in the level of pepQ transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-145-11-3147DOI Listing

Publication Analysis

Top Keywords

delbrueckii subsp
16
subsp lactis
16
lactobacillus delbrueckii
8
pepq promoter
8
dna fragments
8
pepr1
7
pepq
6
pepr1 ccpa-like
4
transcription
4
ccpa-like transcription
4

Similar Publications

Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.

View Article and Find Full Text PDF

Background/objectives: Functional probiotics, particularly subsp. CKDB001, have shown potential as a therapeutic option for metabolic dysfunction-associated steatotic liver disease (MASLD). However, their effects have not been confirmed in in vivo systems.

View Article and Find Full Text PDF

Effect of Genetic Polymorphism of Bovine β-Casein Variants (A1 and A2) on Yoghurt Characteristics.

Foods

December 2024

Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO (CERTA-UAB), Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain.

The present study aims to evaluate the physicochemical and sensory characteristics of A2 yoghurts (made with A2A2 β-CN milk), in comparison with Control yoghurts (elaborated from conventional milk, a mixture of A1 and A2 β-CN milk). The pH, acidity, water-holding capacity, spontaneous syneresis, firmness and color of yoghurts were monitored during their cold storage (4 °C) for 35 days. Two independent sensory tests (with expert judges and consumers) were also performed.

View Article and Find Full Text PDF

The present study aimed to evaluate the effects of incorporating different concentrations (1% and 2%) of Malvaviscus arboreus flower (FE) and leaf (LE) extracts as functional ingredients in goat milk yogurt. This study analyzed the impact of these formulations (YFE1%, YFE2%, YLE1%, and YLE2%) on the physicochemical, bioactive, antioxidant, rheological, textural, and sensory properties of goat yogurt over a 28-day storage period. Including FE and LE extracts significantly enhanced the yogurt's antioxidant activity, reaching up to 10.

View Article and Find Full Text PDF

The increase in food production is accompanied by an increase in waste, particularly agricultural by-products from cultivation and processing. These residues are referred to as agricultural by-products. To address this issue, biotechnological processes can be used to create new applications for these by-products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!